ترغب بنشر مسار تعليمي؟ اضغط هنا

Finite-dimensional global and exponential attractors for the reaction-diffusion problem with an obstacle potential

206   0   0.0 ( 0 )
 نشر من قبل Antonio Segatti
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A reaction-diffusion problem with an obstacle potential is considered in a bounded domain of $R^N$. Under the assumption that the obstacle $K$ is a closed convex and bounded subset of $mathbb{R}^n$ with smooth boundary or it is a closed $n$-dimensional simplex, we prove that the long-time behavior of the solution semigroup associated with this problem can be described in terms of an exponential attractor. In particular, the latter means that the fractal dimension of the associated global attractor is also finite.



قيم البحث

اقرأ أيضاً

134 - Giulio Schimperna 2008
The Penrose-Fife system for phase transitions is addressed. Dirichlet boundary conditions for the temperature are assumed. Existence of global and exponential attractors is proved. Differently from preceding contributions, here the energy balance equ ation is both singular at 0 and degenerate at infinity. For this reason, the dissipativity of the associated dynamical process is not trivial and has to be proved rather carefully.
199 - Bixiang Wang 2009
We study the long time behavior of solutions of the non-autonomous Reaction-Diffusion equation defined on the entire space R^n when external terms are unbounded in a phase space. The existence of a pullback global attractor for the equation is establ ished in L^2(R^n) and H^1(R^n), respectively. The pullback asymptotic compactness of solutions is proved by using uniform a priori estimates on the tails of solutions outside bounded domains.
Given $(M,g)$, a compact connected Riemannian manifold of dimension $d geq 2$, with boundary $partial M$, we consider an initial boundary value problem for a fractional diffusion equation on $(0,T) times M$, $T>0$, with time-fractional Caputo derivat ive of order $alpha in (0,1) cup (1,2)$. We prove uniqueness in the inverse problem of determining the smooth manifold $(M,g)$ (up to an isometry), and various time-independent smooth coefficients appearing in this equation, from measurements of the solution on a subset of $partial M$ at fixed time. In the flat case where $M$ is a compact subset of $mathbb R^d$, two out the three coefficients $rho$ (weight), $a$ (conductivity) and $q$ (potential) appearing in the equation $rho partial_t^alpha u-textrm{div}(a abla u)+ q u=0$ on $(0,T)times Omega$ are recovered simultaneously.
In this paper, we develop the Littman-Stampacchia-Weinberger duality approach to obtain global W^1,p estimates for a class of elliptic problems involving Leray-Hardy operators and measure sources in a distributional framework associated with a dual formulation with a specific weight function.
In this paper we give a full classification of global solutions of the obstacle problem for the fractional Laplacian (including the thin obstacle problem) with compact coincidence set and at most polynomial growth in dimension $N geq 3$. We do this i n terms of a bijection onto a set of polynomials describing the asymptotics of the solution. Furthermore we prove that coincidence sets of global solutions that are compact are also convex if the solution has at most quadratic growth.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا