ﻻ يوجد ملخص باللغة العربية
The first kinetic study of transient growth for a collisionless homogeneous Maxwellian plasma in a uniform magnetic field is presented. A system which is linearly stable may display transient growth if the linear operator describing its evolution is non-normal, so that its eigenvectors are non-orthogonal. In order to include plasma kinetic effects a Landau fluid model is employed. The linear operator of the model is shown to be non-normal and the results suggest that the nonnormality of a collisionless plasma is intrinsically related to its kinetic nature, with the transient growth being more accentuated for smaller scales and higher plasma beta. The results based on linear spectral theory have been confirmed with nonlinear simulations.
Particle condensates in general magnetic mirror geometries in high temperature plasma may be caused by a discrete resonance with thermal ion-acoustic background noise near mirror points. The resonance breaks the bounce symmetry, temporally locking th
The existence of low frequency waveguide modes of ion acoustic waves is demonstrated in magnetized plasmas for electron temperature striated along the magnetic field lines. At higher frequencies, in a band between the ion cyclotron and the ion plasma
We investigate an efficient mechanism for generating magnetic fields in turbulent, collisionless plasmas. By using fully kinetic, particle-in-cell simulations of an initially non-magnetized plasma, we inspect the genesis of magnetization, in a nonlin
The electrostatic shielding of a charged absorbing object (dust grain) in a flowing collisionless plasma is investigated by using the linearized kinetic equation for plasma ions with a point-sink term accounting for ion absorption on the object. The
A higher-order multiscale analysis of the dissipation range of collisionless plasma turbulence is presented using in-situ high-frequency magnetic field measurements from the Cluster spacecraft in a stationary interval of fast ambient solar wind. The