The very recent years have seen a promising start in scientific publications making use of images produced by near-infrared long-baseline interferometry. The technique has reached, at last, a technical maturity level that opens new avenues for numerous astrophysical topics requiring milli-arcsecond model-independent imaging. The Very Large Telescope Interferometer (VLTI) is on the path to be equipped with instruments capable to combine between four to six telescopes. In the framework of the VLTI second generation instruments Gravity and VSI, we propose a new beam combining concept using Integrated Optics (IO) technologies with a novel ABCD-like fringe encoding scheme. Our goal is to demonstrate that IO-based combination brings considerable advantages in terms of instrumental design and performance. We therefore aim at giving a full characterization of an IO beam combiner to establish its performances and check its compliance with the specifications of an imaging instrument. Laboratory measurements were made in the H band with a dedicated testbed. We studied the beam combiners through the analysis of throughput, instrumental visibilities, phases and closure phases in wide band as well as with spectral dispersion. Study of the polarization properties is also done. We obtain competitive throughput, high and stable instrumental contrasts, stable but non-zero closure phases which we attribute to internal well calibrable optical path differences. We validate a new static and achromatic phase shifting IO function close to the nominal 90deg value. All these observables show limited chromaticity over the H band range. Our results demonstrate that such ABCD-like beam combiners are particularly well suited to achieve aperture synthesis imaging. This opens the way to extend to all near infrared wavelengths and in particular, the K band.