ﻻ يوجد ملخص باللغة العربية
We show that the synchronization transition of a large number of noisy coupled oscillators is an example for a dynamic critical point far from thermodynamic equilibrium. The universal behaviors of such critical oscillators, arranged on a lattice in a $d$-dimensional space and coupled by nearest neighbors interactions, can be studied using field theoretical methods. The field theory associated with the critical point of a homogeneous oscillatory instability (or Hopf bifurcation of coupled oscillators) is the complex Ginzburg-Landau equation with additive noise. We perform a perturbative renormalization group (RG) study in a $4-epsilon$ dimensional space. We develop an RG scheme that eliminates the phase and frequency of the oscillations using a scale-dependent oscillating reference frame. Within a Callan-Symanzik RG scheme to two-loop order in perturbation theory, we find that the RG fixed point is formally related to the one of the model $A$ dynamics of the real Ginzburg-Landau theory with an O(2) symmetry of the order parameter. Therefore, the dominant critical exponents for coupled oscillators are the same as for this equilibrium field theory. This formal connection with an equilibrium critical point imposes a relation between the correlation and response functions of coupled oscillators in the critical regime. Since the system operates far from thermodynamic equilibrium, a strong violation of the fluctuation-dissipation relation occurs and is characterized by a universal divergence of an effective temperature. The formal relation between critical oscillators and equilibrium critical points suggests that long-range phase order exists in critical oscillators above two dimensions.
We study the universal thermodynamic properties of systems consisting of many coupled oscillators operating in the vicinity of a homogeneous oscillating instability. In the thermodynamic limit, the Hopf bifurcation is a dynamic critical point far fro
We show that the recent renormalization-group analysis of Lifshitz critical behavior presented by Leite [Phys. Rev. B {bf 67}, 104415 (2003)] suffers from a number of severe deficiencies. In particular, we show that his approach does not give an ultr
We investigate the critical behavior that d-dimensional systems with short-range forces and a n-component order parameter exhibit at Lifshitz points whose wave-vector instability occurs in a m-dimensional isotropic subspace of ${mathbb R}^d$. Utilizi
Using the density-matrix renormalization-group method we study the surface critical behaviour of the magnetization in Ising strips in the subcritical region. Our results support the prediction that the surface magnetization in the two phases along th
The two-dimensional ferromagnetic anisotropic Ashkin-Teller model is investigated through a real-space renormalization-group approach. The critical frontier, separating five distinct phases, recover all the known exacts results for the square lattice