ﻻ يوجد ملخص باللغة العربية
Low Luminosity Active Galactic Nuclei (LLAGNs) are contaminated by the light of their host galaxies, thus they cannot be detected by the usual colour techniques. For this reason their evolution in cosmic time is poorly known. Variability is a property shared by virtually all active galactic nuclei, and it was adopted as a criterion to select them using multi epoch surveys. Here we report on two variability surveys in different sky areas, the Selected Area 57 and the Chandra Deep Field South.
Using data from the Wide-field Infrared Survey Explorer (WISE) we show that the mid infrared (MIR) colors of low-luminosity AGNs (LLAGNs) are significanlty different from those of post-asymptotic giant branch stars (PAGBs). This is due to a differenc
We investigate the X-ray variability characteristics of hard X-ray selected AGNs (based on Swift/BAT data) in the soft X-ray band using the RXTE/ASM data. The uncertainties involved in the individual dwell measurements of ASM are critically examined
The 4 Ms Chandra Deep Field-South (CDF-S) and other deep X-ray surveys have been highly effective at selecting active galactic nuclei (AGN). However, cosmologically distant low-luminosity AGN (LLAGN) have remained a challenge to identify due to signi
H{sc i} absorption studies of active galaxies enable us to probe their circumnuclear regions and the general interstellar medium, and study the supply of gas which may trigger the nuclear activity. In this paper, we investigate the detection rate of
The cosmic evolution of bias of different source populations with underlying dark matter density field in post reionization era can shed light on large scale structures. Studying the angular and spatial distribution of different compact sources using