ترغب بنشر مسار تعليمي؟ اضغط هنا

Boundary Conformal Field Theory and Tunneling of Edge Quasiparticles in non-Abelian Topological States

169   0   0.0 ( 0 )
 نشر من قبل Paul Fendley
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We explain how (perturbed) boundary conformal field theory allows us to understand the tunneling of edge quasiparticles in non-Abelian topological states. The coupling between a bulk non-Abelian quasiparticle and the edge is due to resonant tunneling to a zero mode on the quasiparticle, which causes the zero mode to hybridize with the edge. This can be reformulated as the flow from one conformally-invariant boundary condition to another in an associated critical statistical mechanical model. Tunneling from one edge to another at a point contact can split the system in two, either partially or completely. This can be reformulated in the critical statistical mechanical model as the flow from one type of defect line to another. We illustrate these two phenomena in detail in the context of the nu=5/2 quantum Hall state and the critical Ising model. We briefly discuss the case of Fibonacci anyons and conclude by explaining the general formulation and its physical interpretation.



قيم البحث

اقرأ أيضاً

We study quasiparticle tunneling between the edges of a non-Abelian topological state. The simplest examples are a p+ip superconductor and the Moore-Read Pfaffian non-Abelian fractional quantum Hall state; the latter state may have been observed at L andau-level filling fraction nu=5/2. Formulating the problem is conceptually and technically non-trivial: edge quasiparticle correlation functions are elements of a vector space, and transform into each other as the quasiparticle coordinates are braided. We show in general how to resolve this difficulty and uniquely define the quasiparticle tunneling Hamiltonian. The tunneling operators in the simplest examples can then be rewritten in terms of a free boson. One key consequence of this bosonization is an emergent spin-1/2 degree of freedom. We show that vortex tunneling across a p+ip superconductor is equivalent to the single-channel Kondo problem, while quasiparticle tunneling across the Moore-Read state is analogous to the two-channel Kondo effect. Temperature and voltage dependences of the tunneling conductivity are given in the low- and high-temperature limits.
We present a physical construction of degenerate groundstates of the Moore-Read Pfaffian states, which exhibits non-Abelian statistics, on general Riemann surface with genus g. The construction is given by a generalization of the recent argument [M.O . and T. Senthil, Phys. Rev. Lett. 96, 060601 (2006)] which relates fraction- alization and topological order. The nontrivial groundstate degeneracy obtained by Read and Green [Phys. Rev. B 61, 10267 (2000)] based on differential geometry is reproduced exactly. Some restrictions on the statistics, due to the fractional charge of the quasiparticle are also discussed. Furthermore, the groundstate degeneracy of the p+ip superconductor in two dimensions, which is closely related to the Pfaffian states, is discussed with a similar construction.
Topological field theory in three dimensions provides a powerful tool to construct correlation functions and to describe boundary conditions in two-dimensional conformal field theories.
Topological stability of the edge states is investigated for non-Hermitian systems. We examine two classes of non-Hermitian Hamiltonians supporting real bulk eigenenergies in weak non-Hermiticity: SU(1,1) and SO(3,2) Hamiltonians. As an SU(1,1) Hamil tonian, the tight-binding model on the honeycomb lattice with imaginary on-site potentials is examined. Edge states with ReE=0 and their topological stability are discussed by the winding number and the index theorem, based on the pseudo-anti-Hermiticity of the system. As a higher symmetric generalization of SU(1,1) Hamiltonians, we also consider SO(3,2) models. We investigate non-Hermitian generalization of the Luttinger Hamiltonian on the square lattice, and that of the Kane-Mele model on the honeycomb lattice, respectively. Using the generalized Kramers theorem for the time-reversal operator Theta with Theta^2=+1 [M. Sato et al., arXiv:1106.1806], we introduce a time-reversal invariant Chern number from which topological stability of gapless edge modes is argued.
130 - John Cardy 2017
We propose using smeared boundary states $e^{-tau H}|cal Brangle$ as variational approximations to the ground state of a conformal field theory deformed by relevant bulk operators. This is motivated by recent studies of quantum quenches in CFTs and o f the entanglement spectrum in massive theories. It gives a simple criterion for choosing which boundary state should correspond to which combination of bulk operators, and leads to a rudimentary phase diagram of the theory in the vicinity of the RG fixed point corresponding to the CFT, as well as rigorous upper bounds on the universal amplitude of the free energy. In the case of the 2d minimal models explicit formulae are available. As a side result we show that the matrix elements of bulk operators between smeared Ishibashi states are simply given by the fusion rules of the CFT.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا