The lowest doublet electronic state for the lithium trimer (2A) is calculated for use in three-body scattering calculations using the valence electron FCI method with atomic cores represented using an effective core potential. It is shown that an accurate description of core-valence correlation is necessary for accurate calculations of molecular bond lengths, frequencies and dissociation energies. Interpolation between 2A ab initio surface data points in a sparse grid is done using the global interpolant moving least squares method with a smooth radial data cutoff function included in the fitting weights and bivariate polynomials as a basis set. The Jahn-Teller splitting of the 2E surface into the 2A1 and 2B2 states is investigated using a combination of both CASSCF and FCI levels of theory. Additionally, preliminary calculations of the 2A surface are also presented using second order spin restricted open-shell Moller-Plesset perturbation theory.