ﻻ يوجد ملخص باللغة العربية
We present the theory of a Josephson parametric amplifier employing two pump sources. Our calculations are based on Input-Output Theory, and can easily be generalized to any coupled system involving parametric interactions. We analyze the operation of the device, taking into account the feedback introduced by the reaction of the signal and noise on the pump power, and in this framework, compute the response functions of interest - signal and idler gains, internal gain of the amplifier, and self-oscillation signal amplitude. To account for this back-action between signal and pump, we adopt a mean-field approach and self-consistently explore the boundary between amplification and self-oscillation. The coincidence of bifurcation and self-oscillation thresholds reveals that the origin of coherent emission of the amplifier lies in the multi-wave mixing of the noise components. Incorporation of the back-action leads the system to exhibit hysteresis, dependent on parameters like temperature and detuning from resonance. Our analysis also shows that the resonance condition itself changes in the presence of back-action and this can be understood in terms of the change in plasma frequency of the junction. The potential of the double pump amplifier for quantum-limited measurements and as a squeezer is also discussed.
We report the efficient generation of high-gain parametric down-conversion, including pump depletion, with pump powers as low as 100 $mu$W (energies $0.1$~$mu$J/pulse) and conversion efficiencies up to 33%. In our simple configuration, the pump beam
We demonstrate fast readout of a double quantum dot (DQD) that is coupled to a superconducting resonator. Utilizing parametric amplification in a nonlinear operational mode, we improve the signal-to-noise ratio (SNR) by a factor of 2000 compared to t
A topological pump enables robust transport of quantized particles when the system parameters are varied in a cyclic process. In previous studies, topological pump was achieved inhomogeneous systems guaranteed by a topological invariant of the bulk b
We present a lumped-element Josephson parametric amplifier (JPA) utilizing a straightforward fabrication process involving a single electron beam lithography step followed by double-angle evaporation of aluminum and in-situ oxidation. The Josephson j
We have developed a Josephson parametric amplifier, comprising a superconducting coplanar waveguide resonator terminated by a dc SQUID (superconducting quantum interference device). An external field (the pump, $sim 20$ GHz) modulates the flux thread