ترغب بنشر مسار تعليمي؟ اضغط هنا

A search for massive UCDs in the Centaurus Galaxy Cluster

266   0   0.0 ( 0 )
 نشر من قبل Steffen Mieske
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We recently initiated a search for ultra-compact dwarf galaxies (UCDs) in the Centaurus galaxy cluster (Mieske et al. 2007), resulting in the discovery of 27 compact objects with -12.2<M_V<-10.9 mag. Our overall survey completeness was 15-20% within 120 kpc projected clustercentric distance. In order to better constrain the luminosity distribution of the brightest UCDs in Centaurus, we continue our search by substantially improving our survey completeness specifically in the regime M_V<-12 mag (V_0<21.3 mag). Using VIMOS at the VLT, we obtain low-resolution spectra of 400 compact objects with 19.3<V_0<21.3 mag (-14<M_V<-12 mag at the Centaurus distance) in the central 25 of the Centaurus cluster, which corresponds to a projected radius of ~150 kpc. Our survey yields complete area coverage within ~120 kpc. For 94% of the sources included in the masks we successfully measure a redshift. Due to incompleteness in the slit assignment, our final completeness in the area surveyed is 52%. Among our targets we find three new UCDs in the magnitude range -12.2<M_V<-12 mag, hence at the faint limit of our survey. One of them is covered by archival HST WFPC2 imaging, yielding a size estimate of r_h <= 8-9 pc. At 95% confidence we can reject the hypothesis that in the area surveyed there are more than 2 massive UCDs with M_V<-12.2 mag and r_eff <=70 pc. Our survey hence confirms the extreme rareness of massive UCDs. We find that the radial distributions of Centaurus and Fornax UCDs with respect to their host clusters centers agree within the 2 sigma level.



قيم البحث

اقرأ أيضاً

As part of the HST/ACS Coma Cluster Treasury Survey, we have undertaken a Keck/LRIS spectroscopic campaign to determine membership for faint dwarf galaxies. In the process, we discovered a population of Ultra Compact Dwarf galaxies (UCDs) in the core region of the Coma cluster. At the distance of Coma, UCDs are expected to have angular sizes 0.01 < R_e < 0.2 arcsec. With ACS imaging, we can resolve all but the smallest ones with careful fitting. Candidate UCDs were chosen based on magnitude, color, and degree of resolution. We spectroscopically confirm 27 objects as bona fide UCD members of the Coma cluster, a 60% success rate for objects targeted with M_R < -12. We attribute the high success rate in part to the high resolution of HST data and to an apparent large population of UCDs in Coma. We find that the UCDs tend to be strongly clustered around giant galaxies, at least in the core region of the cluster, and have a distribution and colors that are similar to globular clusters. These findings suggest that UCDs are not independent galaxies, but rather have a star cluster origin. This current study provides the dense environment datapoint necessary for understanding the UCD population.
99 - S. Mieske , M. Hilker , A. Jordan 2007
Aim: To extend the investigations of ultra-compact dwarf galaxies (UCDs) beyond the well studied Fornax and Virgo clusters. Methods: We measured spectroscopic redshifts of about 400 compact object candidates with 19.2 < V < 22.4 mag in the central re gion of the Centaurus galaxy cluster (d=43Mpc), using VIMOS@VLT. The luminosity range of the candidates covers that of bright globular clusters (GCs) and of UCDs in Fornax and Virgo. Results: We confirm the cluster membership of 27 compact objects, covering an absolute magnitude range -12.2 < M_V < -10.9 mag. We do not find counterparts to the two very large and bright UCDs in Fornax and Virgo with M_V=-13.5 mag, possibly due to survey incompleteness. The compact objects distribution in magnitude and space is consistent with that of the GC population. Their kinematics and spatial distribution associate them to the central galaxies rather than to the overall cluster potential. The compact objects have a mean metallicity consistent with that of the metal-rich globular cluster sub-population. Compact objects with high S/N spectra exhibit solar [alpha/Fe] abundances, consistent with typical dwarf elliptical galaxy values and unlike galactic bulge globular clusters. HST based size estimates for a sub-sample of eight compact objects reveal the existence of one very large object with half-light radius r_h around 30 pc, having M_V=-11.6 mag (~10^7 M_sun). This source shows super-solar [alpha/Fe] abundances. Seven further sources are only marginally larger than typical GCs with r_h in the range 4 to 10 pc. Conclusions: We consider the largest compact object found to be the only bona-fide UCD detected in our study. In order to improve our understanding of UCDs in Centaurus, a significant increase of our survey completeness is necessary.
479 - I. Misgeld , M. Hilker , S. Mieske 2009
We present a photometric study of the early-type dwarf galaxy population of the Centaurus cluster, aiming at investigating the galaxy luminosity function (LF) and galaxy scaling relations down to the regime of galaxies with M_V~-10 mag. On deep VLT/F ORS1 V- and I-band images of the central part of the cluster, we identify cluster dwarf-galaxy candidates using both morphological and surface brightness selection criteria. Photometric and structural parameters of the candidates are derived from analysis of their surface brightness profiles. Fundamental scaling relations, such as the colour-magnitude and the magnitude-surface brightness relation, are used to distinguish the cluster from the background. We find a flat LF with a slope of alpha = -1.14 pm 0.12 for M_V>-14 mag, when fitting a power law to the completeness-corrected galaxy number counts. When plotting the central surface brightness of a Sersic model vs. the galaxy magnitude, we find a continuous relation for magnitudes -20<M_V<-10 mag, with only the brightest core galaxies deviating from this relation, in agreement with previous studies of other clusters. In a size-luminosity diagram of early-type galaxies from a range of environments, we observe that R_eff slowly decreases with decreasing luminosity for -21<M_V<-13 mag and decreases more rapidly at fainter magnitudes. This trend continues to the ultra-faint Local Group dwarf galaxies (M_V~-4 mag). The continuous central surface brightness vs. absolute magnitude relation and the smooth relation in the size-luminosity diagram over a wide range of magnitudes are consistent with the interpretation of dwarf galaxies and more massive elliptical galaxies being one family of objects with gradually changing structural properties. The most massive core galaxies and the rare cE galaxies are the only exceptions.
112 - D. Eckert , S. Molendi , M. Owers 2014
Structure formation in the current Universe operates through the accretion of group-scale systems onto massive clusters. The detection and study of such accreting systems is crucial to understand the build-up of the most massive virialized structures we see today. We report the discovery with XMM-Newton of an irregular X-ray substructure in the outskirts of the massive galaxy cluster Abell 2142. The tip of the X-ray emission coincides with a concentration of galaxies. The bulk of the X-ray emission of this substructure appears to be lagging behind the galaxies and extends over a projected scale of at least 800 kpc. The temperature of the gas in this region is 1.4 keV, which is a factor of ~4 lower than the surrounding medium and is typical of the virialized plasma of a galaxy group with a mass of a few 10^13M_sun. For this reason, we interpret this structure as a galaxy group in the process of being accreted onto the main dark-matter halo. The X-ray structure trailing behind the group is due to gas stripped from its original dark-matter halo as it moves through the intracluster medium (ICM). This is the longest X-ray trail reported to date. For an infall velocity of ~1,200 km s-1 we estimate that the stripped gas has been surviving in the presence of the hot ICM for at least 600 Myr, which exceeds the Spitzer conduction timescale in the medium by a factor of >~400. Such a strong suppression of conductivity is likely related to a tangled magnetic field with small coherence length and to plasma microinstabilities. The long survival time of the low-entropy intragroup medium suggests that the infalling material can eventually settle within the core of the main cluster.
We report ALMA Early Science CO(1-0) and CO(3-2) observations of the brightest cluster galaxy (BCG) in Abell 1664. The BCG contains 1.1x10^{10} solar masses of molecular gas divided roughly equally between two distinct velocity systems: one from -250 to +250 km/s centred on the BCGs systemic velocity and a high velocity system blueshifted by 570 km/s with respect to the systemic velocity. The BCGs systemic component shows a smooth velocity gradient across the BCG center with velocity proportional to radius suggestive of solid body rotation about the nucleus. However, the mass and velocity structure are highly asymmetric and there is little star formation coincident with a putative disk. It may be an inflow of gas that will settle into a disk over several 10^8 yr. The high velocity system consists of two gas clumps, each ~2 kpc across, located to the north and southeast of the nucleus. Each has a line of sight velocity spread of 250-300 km/s. The velocity of the gas in the high velocity system tends to increase towards the BCG center and could signify a massive high velocity flow onto the nucleus. However, the velocity gradient is not smooth and these structures are also coincident with low optical-UV surface brightness regions, which could indicate dust extinction associated with each clump. If so, the high velocity gas would be projected in front of the BCG and moving toward us along the line of sight in a massive outflow most likely driven by the AGN. A merger origin is unlikely but cannot be ruled out.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا