ترغب بنشر مسار تعليمي؟ اضغط هنا

How model sets can be determined by their two-point and three-point correlations

130   0   0.0 ( 0 )
 نشر من قبل Robert Moody
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that real model sets with real internal spaces are determined, up to translation and changes of density zero by their two- and three-point correlations. We also show that there exist pairs of real (even one dimensional) aperiodic model sets with internal spaces that are products of real spaces and finite cyclic groups whose two- and three-point correlations are identical but which are not related by either translation or inversion of their windows. All these examples are pure point diffractive. Placed in the context of ergodic uniformly discrete point processes, the result is that real point processes of model sets based on real internal windows are determined by their second and third moments.



قيم البحث

اقرأ أيضاً

We briefly review the diffraction of quasicrystals and then give an elementary alternative proof of the diffraction formula for regular cut-and-project sets, which is based on Bochners theorem from Fourier analysis. This clarifies a common view that the diffraction of a quasicrystal is determined by the diffraction of its underlying lattice. To illustrate our approach, we will also treat a number of well-known explicitly solvable examples.
A $p$-adic Schr{o}dinger-type operator $D^{alpha}+V_Y$ is studied. $D^{alpha}$ ($alpha>0$) is the operator of fractional differentiation and $V_Y=sum_{i,j=1}^nb_{ij}<delta_{x_j}, cdot>delta_{x_i}$ $(b_{ij}inmathbb{C})$ is a singular potential contain ing the Dirac delta functions $delta_{x}$ concentrated on points ${x_1,...,x_n}$ of the field of $p$-adic numbers $mathbb{Q}_p$. It is shown that such a problem is well-posed for $alpha>1/2$ and the singular perturbation $V_Y$ is form-bounded for $alpha>1$. In the latter case, the spectral analysis of $eta$-self-adjoint operator realizations of $D^{alpha}+V_Y$ in $L_2(mathbb{Q}_p)$ is carried out.
55 - M. Baake 1998
After a brief historical survey, the paper introduces the notion of entropic model sets (cut and project sets), and, more generally, the notion of diffractive point sets with entropy. Such sets may be thought of as generalizations of lattice gases. W e show that taking the site occupation of a model set stochastically results, with probabilistic certainty, in well-defined diffractive properties augmented by a constant diffuse background. We discuss both the case of independent, but identically distributed (i.i.d.) random variables and that of independent, but different (i.e., site dependent) random variables. Several examples are shown.
134 - Jindong Guo 2021
We prove the equivalence between two explicit expressions for two-point Witten-Kontsevich correlators obtained by M. Bertola, B. Dubrovin, D. Yang and by P. Zograf.
Random plane wave is conjectured to be a universal model for high-energy eigenfunctions of the Laplace operator on generic compact Riemanian manifolds. This is known to be true on average. In the present paper we discuss one of important geometric ob servable: critical points. We first compute one-point function for the critical point process, in particular we compute the expected number of critical points inside any open set. After that we compute the short-range asymptotic behaviour of the two-point function. This gives an unexpected result that the second factorial moment of the number of critical points in a small disc scales as the fourth power of the radius.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا