ﻻ يوجد ملخص باللغة العربية
We show that real model sets with real internal spaces are determined, up to translation and changes of density zero by their two- and three-point correlations. We also show that there exist pairs of real (even one dimensional) aperiodic model sets with internal spaces that are products of real spaces and finite cyclic groups whose two- and three-point correlations are identical but which are not related by either translation or inversion of their windows. All these examples are pure point diffractive. Placed in the context of ergodic uniformly discrete point processes, the result is that real point processes of model sets based on real internal windows are determined by their second and third moments.
We briefly review the diffraction of quasicrystals and then give an elementary alternative proof of the diffraction formula for regular cut-and-project sets, which is based on Bochners theorem from Fourier analysis. This clarifies a common view that
A $p$-adic Schr{o}dinger-type operator $D^{alpha}+V_Y$ is studied. $D^{alpha}$ ($alpha>0$) is the operator of fractional differentiation and $V_Y=sum_{i,j=1}^nb_{ij}<delta_{x_j}, cdot>delta_{x_i}$ $(b_{ij}inmathbb{C})$ is a singular potential contain
After a brief historical survey, the paper introduces the notion of entropic model sets (cut and project sets), and, more generally, the notion of diffractive point sets with entropy. Such sets may be thought of as generalizations of lattice gases. W
We prove the equivalence between two explicit expressions for two-point Witten-Kontsevich correlators obtained by M. Bertola, B. Dubrovin, D. Yang and by P. Zograf.
Random plane wave is conjectured to be a universal model for high-energy eigenfunctions of the Laplace operator on generic compact Riemanian manifolds. This is known to be true on average. In the present paper we discuss one of important geometric ob