ترغب بنشر مسار تعليمي؟ اضغط هنا

Fixing Convergence of Gaussian Belief Propagation

134   0   0.0 ( 0 )
 نشر من قبل Danny Bickson
 تاريخ النشر 2009
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Gaussian belief propagation (GaBP) is an iterative message-passing algorithm for inference in Gaussian graphical models. It is known that when GaBP converges it converges to the correct MAP estimate of the Gaussian random vector and simple sufficient conditions for its convergence have been established. In this paper we develop a double-loop algorithm for forcing convergence of GaBP. Our method computes the correct MAP estimate even in cases where standard GaBP would not have converged. We further extend this construction to compute least-squares solutions of over-constrained linear systems. We believe that our construction has numerous applications, since the GaBP algorithm is linked to solution of linear systems of equations, which is a fundamental problem in computer science and engineering. As a case study, we discuss the linear detection problem. We show that using our new construction, we are able to force convergence of Montanaris linear detection algorithm, in cases where it would originally fail. As a consequence, we are able to increase significantly the number of users that can transmit concurrently.



قيم البحث

اقرأ أيضاً

We present a simultaneous localization and mapping (SLAM) algorithm that is based on radio signals and the association of specular multipath components (MPCs) with geometric features. Especially in indoor scenarios, robust localization from radio sig nals is challenging due to diffuse multipath propagation, unknown MPC-feature association, and limited visibility of features. In our approach, specular reflections at flat surfaces are described in terms of virtual anchors (VAs) that are mirror images of the physical anchors (PAs). The positions of these VAs and possibly also of the PAs are unknown. We develop a Bayesian model of the SLAM problem and represent it by a factor graph, which enables the use of belief propagation (BP) for efficient marginalization of the joint posterior distribution. The resulting BP-based SLAM algorithm detects the VAs associated with the PAs and estimates jointly the time-varying position of the mobile agent and the positions of the VAs and possibly also of the PAs, thereby leveraging the MPCs in the radio signal for improved accuracy and robustness of agent localization. The algorithm has a low computational complexity and scales well in all relevant system parameters. Experimental results using both synthetic measurements and real ultra-wideband radio signals demonstrate the excellent performance of the algorithm in challenging indoor environments.
This paper proposes a belief propagation (BP)-based algorithm for sequential detection and estimation of multipath components (MPCs) parameters based on radio signals. Under dynamic channel conditions with moving transmitter and/or receiver, the numb er of MPCs reflected from visible geometric features, the MPC dispersion parameters (delay, angle, Doppler frequency, etc), and the number of false alarm contributions are unknown and time-varying. We develop a Bayesian model for sequential detection and estimation of MPC dispersion parameters, and represent it by a factor graph enabling the use of BP for efficient computation of the marginal posterior distributions. At each time instance, a snapshot-based channel estimator provides parameter estimates of a set of MPCs which are used as noisy measurements by the proposed BP-based algorithm. It performs joint probabilistic data association, estimation of the time-varying MPC parameters, and the mean number of false alarm measurements by means of the sum-product algorithm rules. The results using synthetic measurements show that the proposed algorithm is able to cope with a high number of false alarm measurements originating from the snapshot-based channel estimator and to sequentially detect and estimate MPCs parameters with very low signal-to-noise ratio (SNR). The performance of the proposed algorithm compares well to existing algorithms for high SNR MPCs, but significantly it outperforms them for medium or low SNR MPCs. In particular, we show that our algorithm outperforms the Kalman enhanced super resolution tracking (KEST) algorithm, a state-of-the-art sequential channel parameters estimation method. Furthermore, results with real radio measurements demonstrate the excellent performance of the algorithm in realistic and challenging scenarios.
We consider the problem of identifying a pattern of faults from a set of noisy linear measurements. Unfortunately, maximum a posteriori probability estimation of the fault pattern is computationally intractable. To solve the fault identification prob lem, we propose a non-parametric belief propagation approach. We show empirically that our belief propagation solver is more accurate than recent state-of-the-art algorithms including interior point methods and semidefinite programming. Our superior performance is explained by the fact that we take into account both the binary nature of the individual faults and the sparsity of the fault pattern arising from their rarity.
We introduce a two-stage decimation process to improve the performance of neural belief propagation (NBP), recently introduced by Nachmani et al., for short low-density parity-check (LDPC) codes. In the first stage, we build a list by iterating betwe en a conventional NBP decoder and guessing the least reliable bit. The second stage iterates between a conventional NBP decoder and learned decimation, where we use a neural network to decide the decimation value for each bit. For a (128,64) LDPC code, the proposed NBP with decimation outperforms NBP decoding by 0.75 dB and performs within 1 dB from maximum-likelihood decoding at a block error rate of $10^{-4}$.
We consider near maximum-likelihood (ML) decoding of short linear block codes. In particular, we propose a novel decoding approach based on neural belief propagation (NBP) decoding recently introduced by Nachmani et al. in which we allow a different parity-check matrix in each iteration of the algorithm. The key idea is to consider NBP decoding over an overcomplete parity-check matrix and use the weights of NBP as a measure of the importance of the check nodes (CNs) to decoding. The unimportant CNs are then pruned. In contrast to NBP, which performs decoding on a given fixed parity-check matrix, the proposed pruning-based neural belief propagation (PB-NBP) typically results in a different parity-check matrix in each iteration. For a given complexity in terms of CN evaluations, we show that PB-NBP yields significant performance improvements with respect to NBP. We apply the proposed decoder to the decoding of a Reed-Muller code, a short low-density parity-check (LDPC) code, and a polar code. PB-NBP outperforms NBP decoding over an overcomplete parity-check matrix by 0.27-0.31 dB while reducing the number of required CN evaluations by up to 97%. For the LDPC code, PB-NBP outperforms conventional belief propagation with the same number of CN evaluations by 0.52 dB. We further extend the pruning concept to offset min-sum decoding and introduce a pruning-based neural offset min-sum (PB-NOMS) decoder, for which we jointly optimize the offsets and the quantization of the messages and offsets. We demonstrate performance 0.5 dB from ML decoding with 5-bit quantization for the Reed-Muller code.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا