ﻻ يوجد ملخص باللغة العربية
A phenomenological approach to the ferromagnetic two dimensional Potts model on square lattice is proposed. Our goal is to present a simple functional form that obeys the known properties possessed by the free energy of the q-state Potts model. The duality symmetry of the 2D Potts model together with the known results on its critical exponent {alpha} allow to fix consistently the details of the proposed expression for the free energy. The agreement of the analytic ansatz with numerical data in the q=3 case is very good at high and low temperatures as well as at the critical point. It is shown that the q>4 cases naturally fit into the same scheme and that one should also expect a good agreement with numerical data. The limiting q=4 case is shortly discussed.
We study the effect of interfacial phenomena in two-dimensional perfect and random (or disordered) $q$-state Potts models with continuous phase transitions, using, mainly, Monte Carlo techniques. In particular, for the total interfacial adsorption, t
We calculate zeros of the $q$-state Potts model partition function on $m$th-iterate Sierpinski graphs, $S_m$, in the variable $q$ and in a temperature-like variable, $y$. We infer some asymptotic properties of the loci of zeros in the limit $m to inf
A Kallen-Lehman approach to 3D Ising model is analyzed numerically both at low and high temperature. It is shown that, even assuming a minimal duality breaking, one can fix three parameters of the model to get a very good agreement with the MonteCarl
We determine numerically the single-particle and the two-particle spectrum of the three-state quantum Potts model on a lattice by using the density matrix renormalization group method, and extract information on the asymptotic (small momentum) S-matr
The relation between the 2d Ising partition function and spin network evaluations, reflecting a bulk-boundary duality between the 2d Ising model and 3d quantum gravity, promises an exchange of results and methods between statistical physics and quant