ترغب بنشر مسار تعليمي؟ اضغط هنا

VLBI observations of the CORALZ sample: young radio sources at low redshift

271   0   0.0 ( 0 )
 نشر من قبل Nathan de Vries
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Young radio-loud active galactic nuclei form an important tool to investigate the evolution of extragalactic radio sources. To study the early phases of expanding radio sources, we have constructed CORALZ, a sample of 25 compact ($theta<2$) radio sources associated with nearby ($z<0.16$) galaxies. In this paper we determine the morphologies, linear sizes, and put first constraints on the lobe expansion speeds of the sources in the sample. We observed the radio sources from the CORALZ sample with MERLIN at 1.4 GHz or 1.6 GHz, the EVN at 1.6 GHz, and global VLBI at 1.6 GHz and/or 5.0 GHz. Radio maps, morphological classifications, and linear sizes are presented for all sources in the CORALZ sample. We have determined a first upper limit to the expansion velocity of one of the sources, which is remarkably low compared to the brighter GPS sources at higher redshifts, indicating a relation between radio luminosity and expansion speed, in agreement with analytical models. In addition we present further strong evidence that the spectral turnovers in GPS and CSS sources are caused by synchrotron self-absorption (SSA): the CORALZ sources are significantly offset from the well-known correlation between spectral peak frequency and angular size, but this correlation is recovered after correcting for the flux-density dependence, as predicted by SSA theory.



قيم البحث

اقرأ أيضاً

106 - J.F. Zhou 2000
Five compact radio sources, include 0420-014, 1334-127, 1504-166, 2243-123, and 2345-167, were observed at 5GHz by European VLBI (Very Long Baseline Interferometry) Network (EVN) in June, 1996. The primary purpose of this observation was to confirm t heir superluminal proper motions. Here, the results of 1334-127, 1504-166, 2243-123 and 2345-167 are presented.
Spectral variability of radio sources encodes information about the conditions of intervening media, source structure, and emission processes. With new low-frequency radio interferometers observing over wide fractional bandwidths, studies of spectral variability for a large population of extragalactic radio sources are now possible. Using two epochs of observations from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey that were taken one year apart, we search for spectral variability across 100--230 MHz for 21,558 sources. We present methodologies for detecting variability in the spectrum between epochs and for classifying the type of variability: either as a change in spectral shape or as a uniform change in flux density across the bandwidth. We identify 323 sources with significant spectral variability over a year-long timescale. Of the 323 variable sources, we classify 51 of these as showing a significant change in spectral shape. Variability is more prevalent in peaked-spectrum sources, analogous to gigahertz-peaked spectrum and compact steep-spectrum sources, compared to typical radio galaxies. We discuss the viability of several potential explanations of the observed spectral variability, such as interstellar scintillation and jet evolution. Our results suggest that the radio sky in the megahertz regime is more dynamic than previously suggested.
(abridged) Very long baseline interferometry (VLBI) observations at 86$,$GHz (wavelength, $lambda = 3,$mm) reach a resolution of about 50 $mu$as, probing the collimation and acceleration regions of relativistic outflows in active galactic nuclei. To extend the statistical studies of compact extragalactic jets, a large global 86 GHz VLBI survey of 162 radio sources was conducted in 2010-2011 using the Global Millimeter VLBI Array. The survey data attained a typical baseline sensitivity of 0.1 Jy and a typical image sensitivity of 5 mJy/beam, providing successful detections and images for all of the survey targets. For 138 objects, the survey provides the first ever VLBI images made at 86 GHz. Gaussian model fitting of the visibility data was applied to represent the structure of the sources. The Gaussian model-fit-based estimates of brightness temperature ($T_mathrm{b}$) at the jet base (core) and in moving regions (jet components) downstream from the core were compared to the estimates of $T_mathrm{b}$ limits made directly from the visibility data, demonstrating a good agreement between the two methods. The apparent brightness temperature estimates for the jet cores in our sample range from $2.5 times 10^{9},$K to $ 1.3times 10^{12},$K. A population model with a single intrinsic value of brightness temperature, $T_mathrm{0}$, is applied to reproduce the observed $T_mathrm{b}$ distribution. It yields $T_mathrm{0} = (3.77^{+0.10}_{-0.14}) times 10^{11},$K for the jet cores, implying that the inverse Compton losses dominate the emission. In the jet components, $T_mathrm{0} =(1.42^{+0.16}_{-0.19})times 10^{11},$K is found, slightly higher than the equipartition limit of $sim5times 10^{10},$K expected for these jet regions. For objects with sufficient structural detail detected, the adiabatic energy losses dominate the observed changes of $T_mathrm{b}$ along the jet.
67 - A. R. McDonald 2000
Observations of the starburst galaxy, M82, have been made with a 20-station global VLBI array at $lambda$18cm. Maps are presented of the brightest young supernova remnants (SNR) in M82 and the wide-field mapping techniques used in making images over a field of view of $sim$1 arcminute with 3 milliarcsecond resolution are discussed. A limit has been placed on the power law deceleration of the young SNR, 43.31+592 with an index greater than 0.73 $pm$ 0.11 from observations with the European VLBI Network. Using the global array we have resolved compact knots of radio emission in the source which, with future global observations, will enable better constraints to be placed on the expansion parameters of this SNR. The latest global observations have also provided high resolution images of the most compact radio source in M82, 41.95+575. We determine an upper limit to the radial expansion rate along the major axis of 2000 km s$^{-1}$. However, the new images also show structure resembling that of collimated ejection which brings into question the previous explanation of the source as being due to the confinement of a supernova by a high density circumstellar medium. It is apparent that we are now able to image the brightest supernova remnants in M82 with a linear scale which allows direct comparison with galactic SNR such as Cassiopeia A.
We present a sample of 1,483 sources that display spectral peaks between 72 MHz and 1.4 GHz, selected from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey. The GLEAM survey is the widest fractional bandwidth all-sky su rvey to date, ideal for identifying peaked-spectrum sources at low radio frequencies. Our peaked-spectrum sources are the low frequency analogues of gigahertz-peaked spectrum (GPS) and compact-steep spectrum (CSS) sources, which have been hypothesized to be the precursors to massive radio galaxies. Our sample more than doubles the number of known peaked-spectrum candidates, and 95% of our sample have a newly characterized spectral peak. We highlight that some GPS sources peaking above 5 GHz have had multiple epochs of nuclear activity, and demonstrate the possibility of identifying high redshift ($z > 2$) galaxies via steep optically thin spectral indices and low observed peak frequencies. The distribution of the optically thick spectral indices of our sample is consistent with past GPS/CSS samples but with a large dispersion, suggesting that the spectral peak is a product of an inhomogeneous environment that is individualistic. We find no dependence of observed peak frequency with redshift, consistent with the peaked-spectrum sample comprising both local CSS sources and high-redshift GPS sources. The 5 GHz luminosity distribution lacks the brightest GPS and CSS sources of previous samples, implying that a convolution of source evolution and redshift influences the type of peaked-spectrum sources identified below 1 GHz. Finally, we discuss sources with optically thick spectral indices that exceed the synchrotron self-absorption limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا