ترغب بنشر مسار تعليمي؟ اضغط هنا

On simple A-multigraded minimal resolutions

203   0   0.0 ( 0 )
 نشر من قبل Apostolos Thoma
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $A$ be a semigroup whose only invertible element is 0. For an $A$-homogeneous ideal we discuss the notions of simple $i$-syzygies and simple minimal free resolutions of $R/I$. When $I$ is a lattice ideal, the simple 0-syzygies of $R/I$ are the binomials in $I$. We show that for an appropriate choice of bases every $A$-homogeneous minimal free resolution of $R/I$ is simple. We introduce the gcd-complex $D_{gcd}(bf b)$ for a degree $mathbf{b}in A$. We show that the homology of $D_{gcd}(bf b)$ determines the $i$-Betti numbers of degree $bf b$. We discuss the notion of an indispensable complex of $R/I$. We show that the Koszul complex of a complete intersection lattice ideal $I$ is the indispensable resolution of $R/I$ when the $A$-degrees of the elements of the generating $R$-sequence are incomparable.



قيم البحث

اقرأ أيضاً

This paper is devoted to the study of multigraded algebras and multigraded linear series. For an $mathbb{N}^s$-graded algebra $A$, we define and study its volume function $F_A:mathbb{N}_+^sto mathbb{R}$, which computes the asymptotics of the Hilbert function of $A$. We relate the volume function $F_A$ to the volume of the fibers of the global Newton-Okounkov body $Delta(A)$ of $A$. Unlike the classical case of standard multigraded algebras, the volume function $F_A$ is not a polynomial in general. However, in the case when the algebra $A$ has a decomposable grading, we show that the volume function $F_A$ is a polynomial with non-negative coefficients. We then define mixed multiplicities in this case and provide a full characterization for their positivity. Furthermore, we apply our results on multigraded algebras to multigraded linear series. Our work recovers and unifies recent developments on mixed multiplicities. In particular, we recover results on the existence of mixed multiplicities for (not necessarily Noetherian) graded families of ideals and on the positivity of the multidegrees of multiprojective varieties.
190 - Marc Chardin , Navid Nemati 2020
$V$ is a complete intersection scheme in a multiprojective space if it can be defined by an ideal $I$ with as many generators as $textrm{codim}(V)$. We investigate the multigraded regularity of complete intersections scheme in $mathbb{P}^ntimes mathb b{P}^m$. We explicitly compute many values of the Hilbert functions of $0$-dimensional complete intersections. We show that these values only depend upon $n,m$, and the bidegrees of the generators of $I$. As a result, we provide a sharp upper bound for the multigraded regularity of $0$-dimensional complete intersections.
An explicit combinatorial minimal free resolution of an arbitrary monomial ideal $I$ in a polynomial ring in $n$ variables over a field of characteristic $0$ is defined canonically, without any choices, using higher-dimensional generalizations of com bined spanning trees for cycles and cocycles (hedges) in the upper Koszul simplicial complexes of $I$ at lattice points in $mathbb{Z}^n$. The differentials in these sylvan resolutions are expressed as matrices whose entries are sums over lattice paths of weights determined combinatorially by sequences of hedges (hedgerows) along each lattice path. This combinatorics enters via an explicit matroidal expression for the Moore-Penrose pseudoinverses of the differentials in any CW complex as weighted averages of splittings defined by hedges. This Hedge Formula also yields a projection formula from CW chains to boundaries. The translation from Moore-Penrose combinatorics to free resolutions relies on Wall complexes, which construct minimal free resolutions of graded ideals from vertical splittings of Koszul bicomplexes. The algebra of Wall complexes applied to individual hedgerows yields explicit but noncanonical combinatorial minimal free resolutions of arbitrary monomial ideals in any characteristic.
Mustac{t}u{a} has given a conjecture for the graded Betti numbers in the minimal free resolution of the ideal of a general set of points on an irreducible projective algebraic variety. For surfaces in $mathbb P^3$ this conjecture has been proven for points on quadric surfaces and on general cubic surfaces. In the latter case, Gorenstein liaison was the main tool. Here we prove the conjecture for general quartic surfaces. Gorenstein liaison continues to be a central tool, but to prove the existence of our links we make use of certain dimension computations. We also discuss the higher degree case, but now the dimension count does not force the existence of our links.
352 - M.E. Rossi , L. Sharifan 2009
Numerical invariants of a minimal free resolution of a module $M$ over a regular local ring $(R, )$ can be studied by taking advantage of the rich literature on the graded case. The key is to fix suitable $ $-stable filtrations ${mathbb M} $ of $M $ and to compare the Betti numbers of $M$ with those of the associated graded module $ gr_{mathbb M}(M). $ This approach has the advantage that the same module $M$ can be detected by using different filtrations on it. It provides interesting upper bounds for the Betti numbers and we study the modules for which the extremal values are attained. Among others, the Koszul modules have this behavior. As a consequence of the main result, we extend some results by Aramova, Conca, Herzog and Hibi on the rigidity of the resolution of standard graded algebras to the local setting.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا