ﻻ يوجد ملخص باللغة العربية
The mathematical apparatus of quantum--mechanical angular momentum (re)coupling, developed originally to describe spectroscopic phenomena in atomic, molecular, optical and nuclear physics, is embedded in modern algebraic settings which emphasize the underlying combinational aspects. SU(2) recoupling theory, involving Wigners 3nj symbols, as well as the related problems of their calculations, general properties, asymptotic limits for large entries, play nowadays a prominent role also in quantum gravity and quantum computing applications. We refer to the ingredients of this theory -and of its extension to other Lie and quantum group- by using the collective term of `spin networks. Recent progress is recorded about the already established connections with the mathematical theory of discrete orthogonal polynomials (the so-called Askey Scheme), providing powerful tools based on asymptotic expansions, which correspond on the physical side to various levels of semi-classical limits. These results are useful not only in theoretical molecular physics but also in motivating algorithms for the computationally demanding problems of molecular dynamics and chemical reaction theory, where large angular momenta are typically involved. As for quantum chemistry, applications of these techniques include selection and classification of complete orthogonal basis sets in atomic and molecular problems, either in configuration space (Sturmian orbitals) or in momentum space. In this paper we list and discuss some aspects of these developments -such as for instance the hyperquantization algorithm- as well as a few applications to quantum gravity and topology, thus providing evidence of a unifying background structure.
Understanding gravity in the framework of quantum mechanics is one of the great challenges in modern physics. Along this line, a prime question is to find whether gravity is a quantum entity subject to the rules of quantum mechanics. It is fair to sa
We analyse a gedankenexperiment previously considered by Mari et al. that involves quantum superpositions of charged and/or massive bodies (particles) under the control of the observers, Alice and Bob. In the electromagnetic case, we show that the qu
This paper draws on a number of Roger Penroses ideas - including the non-Hamiltonian phase-space flow of the Hawking Box, Conformal Cyclic Cosmology, non-computability and gravitationally induced quantum state reduction - in order to propose a radica
It has recently been reported [textit{PNAS} textbf{114}, 2303 (2017)] that, under an operational definition of time, quantum clocks would get entangled through gravitational effects. Here we study an alternative scenario: the clocks have different ma
We define bulk/boundary maps corresponding to quantum gravity states in the tensorial group field theory formalism, for quantum geometric models sharing the same type of quantum states of loop quantum gravity. The maps are defined in terms of a parti