ﻻ يوجد ملخص باللغة العربية
We report on simulations of capillary filling of high-wetting fluids in nano-channels with and without obstacles. We use atomistic (molecular dynamics) and hydrokinetic (lattice-Boltzmann) approaches which point out clear evidence of the formation of thin precursor films, moving ahead of the main capillary front. The dynamics of the precursor films is found to obey a square-root law as the main capillary front, z^2(t) ~ t, although with a larger prefactor, which we find to take the same value for the different geometries (2D-3D) under inspection. The two methods show a quantitative agreement which indicates that the formation and propagation of thin precursors can be handled at a mesoscopic/hydrokinetic level. This can be considered as a validation of the Lattice-Boltzmann (LB) method and opens the possibility of using hydrokinetic methods to explore space-time scales and complex geometries of direct experimental relevance. Then, LB approach is used to study the fluid behaviour in a nano-channel when the precursor film encounters a square obstacle. A complete parametric analysis is performed which suggests that thin-film precursors may have an important influence on the efficiency of nanochannel-coating strategies.
We present hydrokinetic Lattice Boltzmann and Molecular Dynamics simulations of capillary filling of high-wetting fluids in nano-channels, which provide clear evidence of the formation of thin precursor films, moving ahead of the main capillary front
We present the results of large scale simulations of 4th order nonlinear partial differential equations of dif- fusion type that are typically encountered when modeling dynamics of thin fluid films on substrates. The simulations are based on the alte
We investigate the wave-optical light scattering properties of deformed thin circular films of constant thickness using the discrete-dipole approximation. Effects on the intensity distribution of the scattered light due to different statistical rough
We study the hydrodynamic coupling between particles and solid, rough boundaries characterized by random surface textures. Using the Lorentz reciprocal theorem, we derive analytical expressions for the grand mobility tensor of a spherical particle an
We show how the capillary filling of microchannels is affected by posts or ridges on the sides of the channels. Ridges perpendicular to the flow direction introduce contact line pinning which slows, or sometimes prevents, filling; whereas ridges para