ترغب بنشر مسار تعليمي؟ اضغط هنا

A Search for H2O Megamasers in High-z Type-2 AGNs

225   0   0.0 ( 0 )
 نشر من قبل Nicola Bennert
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a search for H2O megamasers in 274 SDSS type-2 AGNs (0.3 < z < 0.83), half of which can be classified as type-2 QSOs from their [OIII] 5007 luminosity, using the Robert C. Byrd Green Bank Telescope (GBT) and the Effelsberg 100-m radio telescope. Apart from the detection of the extremely luminous water vapor megamaser SDSS J080430.99+360718.1, already reported by Barvainis & Antonucci (2005), we do not find any additional line emission. This high rate of non-detections is compared to the water maser luminosity function created from the 78 water maser galaxies known to date and its extrapolation towards the higher luminosities of gigamasers that we would have been able to detect given the sensitivity of our survey. The properties of the known water masers are summarized and discussed with respect to the nature of high-z type-2 AGNs and megamasers in general. In the appendix, we list 173 additional objects (mainly radio galaxies, but also QSOs and galaxies) that were observed with the GBT, the Effelsberg 100-m radio telescope, or Arecibo Observatory without leading to the detection of water maser emission.



قيم البحث

اقرأ أيضاً

Research over the past decade has shown diminishing empirical evidence for major galaxy mergers being a dominating or even important mechanism for the growth of supermassive black holes in galaxies and the triggering of optically or X-ray selected ac tive galactic nuclei (AGN). We here for the first time test whether such a connection exists at least in the most plausible part of parameter space for this mechanism: the highest specific accretion rate broad-line AGNs at the peak epoch of black hole activity around z = 2. To that end we examine 21 galaxies hosting a high accreting black hole (L/Ledd > 0.7) observed with HST/WFC3 and 92 stellar mass- and redshift- matched inactive galaxies taken from the CANDELS survey. We removed the AGN point sources from their host galaxies and avoided bias in visual classification by adding and then subtracting mock point sources to and from the comparison galaxies, producing matched residual structures for both sets. The resulting samples were joined, randomized, and subsequently visually ranked with respect to perceived strength of structural distortions by 10 experts. The ensuing individual rankings were combined into a consensus sequence and from this we derived merger fractions for both samples. With the merger fractions f$_{m,agn}$ = 0.24 $pm$ 0.09 for the AGN host galaxy sample and f$_{m,ina}$ = 0.19 $pm$ 0.04 for the inactive galaxies, we find no significant difference between the AGN host galaxies and inactive galaxies. Also, both samples display comparable fractions of disk-dominated galaxies. These findings are consistent with previous studies for different AGN populations, and we conclude that even black hole growth at the highest specific accretion rates and at the peak of cosmic AGN activity is not predominantly caused by major mergers. (abriged)
Type 2 AGNs with intrinsically weak broad emission lines (BELs) would be exceptions to the unified model. After examining a number of proposed candidates critically, we find that the sample is contaminated significantly by objects with BELs of streng ths indicating that they actually contain intermediate-type AGNs, plus a few Compton-thick sources as revealed by extremely low ratios of X-ray to nuclear IR luminosities. We develop quantitative metrics that show two (NGC 3147 and NGC 4594) of the remaining candidates to have BELs 2-3 orders of magnitude weaker than those of typical type-1 AGNs. Several more galaxies remain as candidates to have anomalously weak BELs, but this status cannot be confirmed with the existing information. Although the parent sample is poorly defined, the two confirmed objects are well under 1% of its total number of members, showing that the absence of a BEL is possible, but very uncommon in AGN. We evaluate these two objects in detail using multi-wavelength measurements. They have little X-ray extinction with N_H < 10^21 cm^{-2}. Their IR spectra show strong silicate emission (NGC 4594) or weak aromatic features on a generally power law continuum with a suggestion of silicates in emission (NGC 3147). No polarized BEL is detected in NGC 3147. These results indicate that the two unobscured type-2 objects have circumnuclear tori that are approximately face-on. Combined with their X-ray and optical/UV properties, this behavior implies that we have an unobscured view of the nuclei and thus that they have intrinsically weak BELs. We compare their properties with those of the other less-extreme candidates. We then compare the distributions of bolometric luminosities and accretion rates of these objects with theoretical models that predict weak BELs.
93 - C. Yang , A. Omont , A. Beelen 2016
(abridged) We report rest-frame submillimeter H2O emission line observations of 11 HyLIRGs/ULIRGs at z~2-4 selected among the brightest lensed galaxies discovered in the Herschel-ATLAS. Using the IRAM NOEMA, we have detected 14 new H2O emission lines . The apparent luminosities of the H2O emission lines are $mu L_{rm{H_2O}} sim 6-21 times 10^8 L_odot$, with velocity-integrated line fluxes ranging from 4-15 Jy km s$^{-1}$. We have also observed CO emission lines using EMIR on the IRAM 30m telescope in seven sources. The velocity widths for CO and H2O lines are found to be similar. With almost comparable integrated flux densities to those of the high-J CO line, H2O is found to be among the strongest molecular emitters in high-z Hy/ULIRGs. We also confirm our previously found correlation between luminosity of H2O ($L_{rm{H_2O}}$) and infrared ($L_{rm{IR}}$) that $L_{rm{H_2O}} sim L_{rm{IR}}^{1.1-1.2}$, with our new detections. This correlation could be explained by a dominant role of far-infrared (FIR) pumping in the H2O excitation. Modelling reveals the FIR radiation fields have warm dust temperature $T_rm{warm}$~45-75 K, H2O column density per unit velocity interval $N_{rm{H_2O}}/Delta V gtrsim 0.3 times 10^{15}$ cm$^{-2}$ km$^{-1}$ s and 100 $mu$m continuum opacity $tau_{100} > 1$ (optically thick), indicating that H2O is likely to trace highly obscured warm dense gas. However, further observations of $Jgeq4$ H2O lines are needed to better constrain the continuum optical depth and other physical conditions of the molecular gas and dust. We have also detected H2O+ emission in three sources. A tight correlation between $L_{rm{H_2O}}$ and $L_{rm{H_2O^+}}$ has been found in galaxies from low to high redshift. The velocity-integrated flux density ratio between H2O+ and H2O suggests that cosmic rays generated by strong star formation are possibly driving the H2O+ formation.
We have conducted a systematic survey for z $<$ 0.04 active Galactic nuclei (AGNs) that may have changed spectral class over the past decade. We use SkyMapper, Pan-STARRS and the Veron-Cetty & Veron (2010) catalogue to search the entire sky for these ``changing-look AGNs using a variety of selection methods, where Pan-STARRS has a coverage of 3$pi$ steradians (sky north of Declination $-30^circ$) and SkyMapper has coverage of $sim$ 21,000$~rm{deg^2}$ (sky south of Declination $0^circ$). We use small aperture photometry to measure how colour and flux have changed over time, where a change may indicate a change in spectral type. Optical colour and flux are used as a proxy for changing H$alpha$ equivalent width, while WISE 3.4 $mu$m flux is used to look for changes in the hot dust component. We have identified four AGNs with varying spectra selected using our optical colour selection method. Three AGNs were confirmed from recent observations with WiFeS on the 2.3 m telescope at Siding Spring and the other was identified from archival spectra alone. From this, we identify two new changing look AGNs; NGC 1346 and 2MASX J20075129-1108346. We also recover Mrk 915 and Mrk 609, which are known to have varying spectra in the literature, but they do not meet our specific criteria for changing look AGNs.
We report the discovery of new, high-velocity narrow-line components of the OH megamaser in IRAS 20100-4156. Results from the Australian Square Kilometre Array Pathfinder (ASKAP)s Boolardy Engineering Test Array (BETA) and the Australia Telescope Com pact Array (ATCA) provide two independent measurements of the OH megamaser spectrum. We found evidence for OH megamaser clumps at $-$409 and $-$562 km/s (blue-shifted) from the systemic velocity of the galaxy, in addition to the lines previously known. The presence of such high velocities in the molecular emission from IRAS 20100$-$4156 could be explained by a ~50 pc molecular ring enclosing an approximately 3.8 billion solar mass black hole. We also discuss two alternatives, i.e. that the narrow-line masers are dynamically coupled to the wind driven by the active galactic nucleus or they are associated with two separate galactic nuclei. The comparison between the BETA and ATCA spectra provides another scientific verification of ASKAPs BETA. Our data, combined with previous measurements of the source enabled us to study the variability of the source over a twenty-six year period. The flux density of the brightest OH maser components has reduced by more than a factor of two between 1988 and 2015, whereas a secondary narrow-line component has more than doubled in the same time. Plans for high-resolution VLBI follow-up of this source are discussed, as are prospects for discovering new OH megamasers during the ASKAP early science program.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا