ﻻ يوجد ملخص باللغة العربية
We consider the pairing of electrons and holes due to their Coulomb attraction in two parallel, independently gated graphene layers, separated by a barrier. At weak coupling, there exist the BCS-like pair-condensed state. Despite the fact that electrons and holes behave like massless Dirac fermions, the problem of BCS-like electron-hole pairing in graphene bilayer turns out to be rather similar to that in usual coupled semiconductor quantum wells. The distinctions are due to Berry phase of electronic wave functions and different screening properties. We estimate values of the gap in one-particle excitation spectrum for different interlayer distances and carrier concentrations. Influence of disorder is discussed. At large enough dielectric susceptibility of surrounding medium, the weak coupling regime holds even at arbitrarily small carrier concentrations. Localized electron-hole pairs are absent in graphene, thus the behavior of the system versus coupling strength is cardinally different from usual BCS-BEC crossover.
Excitons are electron-hole (e-h) pair quasiparticles, which may form a Bose-Einstein condensate (BEC) and collapse into the phase coherent state at low temperature. However, because of ephemeral strength of pairing, a clear evidence for BEC in electr
Band structure determines the motion of electrons in a solid, giving rise to exotic phenomena when properly engineered. Drawing an analogy between electrons and photons, artificially designed optical lattices indicate the possibility of a similar ban
We consider ground state of electron-hole graphene bilayer composed of two independently doped graphene layers when a condensate of spatially separated electron-hole pairs is formed. In the weak coupling regime the pairing affects only conduction ban
Twisted bilayer graphene (tBLG) has recently emerged as a platform for hosting correlated phenomena, owing to the exceptionally flat band dispersion that results near interlayer twist angle $thetaapprox1.1^circ$. At low temperature a variety of phase
Superfluidity in e-h bilayers in graphene and GaAs has been predicted many times but not observed. A key problem is how to treat the screening of the Coulomb interaction for pairing. Different mean-field theories give dramatically different conclusio