ﻻ يوجد ملخص باللغة العربية
Results of high-resolution simultaneous multi-frequency 8.1-15.4 GHz VLBA polarimetric observations of relativistic jets in active galactic nuclei (the MOJAVE-2 project) are analyzed. We compare characteristics of VLBI features with jet model predictions and test if adiabatic expansion is a dominating mechanism for the evolution of relativistic shocks in parsec-scale AGN jets. We also discuss magnetic field configuration, both predicted by the model and deduced from electric vector position angle measurements.
The question of the degree of order in the magnetic fields of relativistic jets is important to any understanding of their production. Both vector-ordered (e.g. helical) and disordered, but anisotropic fields can produce the high observed degrees of
We present results of simultaneous dual-frequency (2 GHz and 8 GHz) very long baseline interferometry (VLBI) observations of 12 active galactic nuclei with prominent jets. Spectral properties of the jets and evolution of their brightness temperature
We have performed 2.5D and 3D simulations of conical jets driven by the rotation of an ordered, large-scale magnetic field in a stratified atmosphere. The simulations cover about three orders of magnitude in distance to capture the centrifugal accele
Using our new 3-D relativistic electromagnetic particle (REMP) code parallelized with MPI, we have investigated long-term particle acceleration associated with an relativistic electron-positron jet propagating in an unmagnetized ambient electron-posi
We consider the conditions under which a rotating magnetic object can produce a magnetically powered outflow in an initially unmagnetized medium stratified under gravity. 3D MHD simulations are presented in which the footpoints of localized, arcade-s