نقدر نقدم مراجعة للتقاط المقطع المحدد (DDA)، الذي هو طريقة عامة لمحاكاة الانعكاس الضوئي بأشكال بدون حدود. نضع الطريقة في سياق تاريخي ونناقش التطورات الحديثة، من وجهة نظر هيكل عام بناء على المعادلات الحاصلة للمجال الكهربائي. نراجع كلا من نظرية DDA وجوانبها الرقمية، الأخيرة يكون من الأهمية الحاسمة لأي تطبيق عملي للطريقة. وأخيرا، نظر الموقع لDDA بين طرق أخرى لمحاكاة الانعكاس الضوئي ونناقش التطورات المحتملة في المستقبل.
We present a review of the discrete dipole approximation (DDA), which is a general method to simulate light scattering by arbitrarily shaped particles. We put the method in historical context and discuss recent developments, taking the viewpoint of a general framework based on the integral equations for the electric field. We review both the theory of the DDA and its numerical aspects, the latter being of critical importance for any practical application of the method. Finally, the position of the DDA among other methods of light scattering simulation is shown and possible future developments are discussed.
We propose an extrapolation technique that allows accuracy improvement of the discrete dipole approximation computations. The performance of this technique was studied empirically based on extensive simulations for 5 test cases using many different d
We performed a rigorous theoretical convergence analysis of the discrete dipole approximation (DDA). We prove that errors in any measured quantity are bounded by a sum of a linear and quadratic term in the size of a dipole d, when the latter is in th
We present a method of incorporating the discrete dipole approximation (DDA) method with the point matching method to formulate the T-matrix for modeling arbitrarily shaped micro-sized objects. The emph{T}-matrix elements are calculated using point m
In this manuscript we investigate the capabilities of the Discrete Dipole Approximation (DDA) to simulate scattering from particles that are much larger than the wavelength of the incident light, and describe an optimized publicly available DDA compu
PYSCF is a Python-based general-purpose electronic structure platform that both supports first-principles simulations of molecules and solids, as well as accelerates the development of new methodology and complex computational workflows. The present