ﻻ يوجد ملخص باللغة العربية
We analyze the relationship between tripartite entanglement and genuine tripartite nonlocality for 3-qubit pure states in the GHZ class. We consider a family of states known as the generalized GHZ states and derive an analytical expression relating the 3-tangle, which quantifies tripartite entanglement, to the Svetlichny inequality, which is a Bell-type inequality that is violated only when all three qubits are nonlocally correlated. We show that states with 3-tangle less than 1/2 do not violate the Svetlichny inequality. On the other hand, a set of states known as the maximal slice states do violate the Svetlichny inequality, and exactly analogous to the two-qubit case, the amount of violation is directly related to the degree of tripartite entanglement. We discuss further interesting properties of the generalized GHZ and maximal slice states.
Article presents general formulation of entanglement measures problem in terms of correlation function. Description of entanglement in probabilistic framework allow us to introduce new quantity which describes quantum and classical correlations. This
We provide an analytical tripartite-study from the generalized $R$-matrix. It provides the upper bound of the maximum violation of Mermins inequality. For a generic 2-qubit pure state, the concurrence or $R$-matrix characterizes the maximum violation
We consider the behaviour of bipartite and tripartite non-locality between fermionic entangled states shared by observers, one of whom uniformly accelerates. We find that while fermionic entanglement persists for arbitrarily large acceleration, the B
A previously overlooked constraint for the distribution of entanglement in three-qubit systems is exploited for the first time and used to reveal a new genuine tripartite entanglement measure. It is interpreted as the area of a so-called concurrence
Consider a stabilizer state on $n$ qudits, each of dimension $D$ with $D$ being a prime or a squarefree integer, divided into three mutually disjoint sets or parts. Generalizing a result of Bravyi et al. [J. Math. Phys. textbf{47}, 062106 (2006)] for