ﻻ يوجد ملخص باللغة العربية
Using molecular dynamics computer simulations we investigate the aging dynamics of a gel. We start from a fractal structure generated by the DLCA-DEF algorithm, onto which we then impose an interaction potential consisting of a short-range attraction as well as a long-range repulsion. After relaxing the system at T=0, we let it evolve at a fixed finite temperature. Depending on the temperature T we find different scenarios for the aging behavior. For T>0.2 the fractal structure is unstable and breaks up into small clusters which relax to equilibrium. For T<0.2 the structure is stable and the dynamics slows down with increasing waiting time. At intermediate and low T the mean squared displacement scales as t^{2/3} and we discuss several mechanisms for this anomalous time dependence. For intermediate T, the self-intermediate scattering function is given by a compressed exponential at small wave-vectors and by a stretched exponential at large wave-vectors. In contrast, for low T it is a stretched exponential for all wave-vectors. This behavior can be traced back to a subtle interplay between elastic rearrangements, fluctuations of chain-like filaments, and heterogeneity.
We use numerical simulations and an athermal quasi-static shear protocol to investigate the yielding of a model colloidal gel. Under increasing deformation, the elastic regime is followed by a significant stiffening before yielding takes place. A spa
Epithelial cell tissues have a slow relaxation dynamics resembling that of supercooled liquids. Yet, they also have distinguishing features. These include an extended short-time sub-diffusive transient, as observed in some experiments and recent stud
We present x-ray photon correlation spectroscopy measurements of the atomic dynamics in a Zr67Ni33 metallic glass, well below its glass transition temperature. We find that the decay of the density fluctuations can be well described by compressed, th
We use X-Ray Photon Correlation Spectroscopy to investigate the structural relaxation process in a metallic glass on the atomic length scale. We report evidence for a dynamical crossover between the supercooled liquid phase and the metastable glassy
Colloidal gel networks are disordered elastic solids that can form even in extremely dilute particle suspensions. With interaction strengths comparable to the thermal energy, their stress-bearing network can locally restructure via breaking and refor