ﻻ يوجد ملخص باللغة العربية
The effects of line-tying on resistive tearing instability in slab geometry is studied within the framework of reduced magnetohydrodynamics (RMHD).citep{KadomtsevP1974,Strauss1976} It is found that line-tying has a stabilizing effect. The tearing mode is stabilized when the system length $L$ is shorter than a critical length $L_{c}$, which is independent of the resistivity $eta$. When $L$ is not too much longer than $L_{c}$, the growthrate $gamma$ is proportional to $eta$ . When $L$ is sufficiently long, the tearing mode scaling $gammasimeta^{3/5}$ is recovered. The transition from $gammasimeta$ to $gammasimeta^{3/5}$ occurs at a transition length $L_{t}simeta^{-2/5}$.
The saturation of the tearing mode instability is described within the standard framework of reduced magnetohydrodynamics (RMHD) in the case of an $r$-dependent or of a uniform resistivity profile. Using the technique of matched asymptotic expansions
In this study, the evolution of a highly unstable m = 1 resistive tearing mode, leading to plasmoid formation in a Harris sheet is studied in the framework of full MHD model using the NIMROD simulation. Following the initial nonlinear growth of the p
The paper presents a review of dynamic stabilization mechanisms for plasma instabilities. One of the dynamic stabilization mechanisms for plasma instability was proposed in the papers [Phys. Plasmas 19, 024503(2012) and references therein], based on
Linear gyrokinetic simulations covering the collisional -- collisionless transitional regime of the tearing instability are performed. It is shown that the growth rate scaling with collisionality agrees well with that predicted by a two-fluid theory
Finite Larmor radius (FLR) effects on non-diffusive transport in a prototypical zonal flow with drift waves are studied in the context of a simplified chaotic transport model. The model consists of a superposition of drift waves of the linearized Has