ﻻ يوجد ملخص باللغة العربية
We show that a large subclass of variograms is closed under products and that some desirable stability properties, such as the product of special compositions, can be obtained within the proposed setting. We introduce new classes of kernels of Schoenberg-L{e}vy type and demonstrate some important properties of rotationally invariant variograms.
It is well known that an $n times n$ Wishart matrix with $d$ degrees of freedom is close to the appropriately centered and scaled Gaussian Orthogonal Ensemble (GOE) if $d$ is large enough. Recent work of Bubeck, Ding, Eldan, and Racz, and independent
The spectral gap $gamma$ of an ergodic and reversible Markov chain is an important parameter measuring the asymptotic rate of convergence. In applications, the transition matrix $P$ may be unknown, yet one sample of the chain up to a fixed time $t$ m
We consider the class $Psi_d$ of continuous functions $psi colon [0,pi] to mathbb{R}$, with $psi(0)=1$ such that the associated isotropic kernel $C(xi,eta)= psi(theta(xi,eta))$ ---with $xi,eta in mathbb{S}^d$ and $theta$ the geodesic distance--- is p
This paper has been temporarily withdrawn, pending a revised version taking into account similarities between this paper and the recent work of del Barrio, Gine and Utzet (Bernoulli, 11 (1), 2005, 131-189).
We establish a central limit theorem for (a sequence of) multivariate martingales which dimension potentially grows with the length $n$ of the martingale. A consequence of the results are Gaussian couplings and a multiplier bootstrap for the maximum