ﻻ يوجد ملخص باللغة العربية
(abridged) We present a study on the effects of the intracluster medium (ICM) on the interstellar medium (ISM) of 10 Virgo cluster spiral galaxies using {it Spitzer} far-infrared (FIR) and VLA radio continuum imaging. Relying on the FIR-radio correlation within normal galaxies, we use our infrared data to create model radio maps which we compare to the observed radio images. For 6 of our sample galaxies we find regions along their outer edges that are highly deficient in the radio compared with our models. We believe these observations are the signatures of ICM ram pressure. For NGC 4522 we find the radio deficit region to lie just exterior to a region of high radio polarization and flat radio spectral index, although the total 20 cm radio continuum in this region does not appear strongly enhanced. These characteristics seem consistent for other galaxies with radio polarization data in the literature. The strength of the radio deficit is inversely correlated with the time since peak pressure as inferred from stellar population studies and gas stripping simulations, suggesting the strength of the radio deficit is good indicator of the strength of the current ram pressure. We also find that galaxies having {it local} radio {it deficits} appear to have {it enhanced global} radio fluxes. Our preferred physical picture is that the observed radio deficit regions arise from the ICM wind sweeping away cosmic-ray (CR) electrons and the associated magnetic field, thereby creating synchrotron tails as observed for some of our galaxies. We propose that CR particles are also re-accelerated by ICM-driven shocklets behind the observed radio deficit regions which in turn enhances the remaining radio disk brightness.
We present a study on the effects of the intracluster medium (ICM) on the interstellar medium (ISM) of 10 Virgo cluster galaxies using {it Spitzer} far-infrared (FIR) and VLA radio continuum imaging. Relying on the FIR-radio correlation {it within} n
We present results from an on-going follow-up campaign of far-infrared sources detected as part of our ISOPHOT Cosmic IR Background project. Fields have been imaged in the optical and near-infrared, and we find at least a third of the FIR targets are
Using data obtained for twelve galaxies as part of the {it Spitzer} Infrared Nearby Galaxies Survey (SINGS) and the Westerbork Synthesis Radio Telescope (WSRT)-SINGS radio continuum survey, we study how star formation activity affects the far-infrare
We investigate the correlation between far-infrared (FIR) and radio luminosities in distant galaxies, a lynchpin of modern astronomy. We use data from the Balloon-borne Large Aperture Submillimetre Telescope (BLAST), Spitzer, the Large Apex BOlometer