ﻻ يوجد ملخص باللغة العربية
We study the coherent light-matter interactions of GaAs quantum wells associated with excitons, biexcitons and many-body effects. For most polarization configurations, excitonic features dominate the phase-resolved two-dimensional Fourier-transform (2DFT) spectra and have dispersive lineshapes, indicating the presence of many-body interactions. For cross-linear excitation, excitonic features become weak and absorptive due to the strong suppression of many-body effects; a result that can not be directly determined in transient four-wave mixing experiments. The biexcitonic features do not weaken for cross-polarized excitation and thus are more important.
Fourier transform spectroscopy with classical interferometry corresponds to the measurement of a single-photon intensity spectrum from the viewpoint of the particle nature of light. In contrast, the Fourier transform of two-photon quantum interferenc
A combination of spatial interference patterns and spectral interferometry are used to find the global phase for non-collinear two-dimensional Fourier-transform (2DFT) spectra. Results are compared with those using the spectrally resolved transient a
We report calculations of the energies of excitons and biexcitons in ideal two-dimensional bilayer systems within the effective-mass approximation with isotropic electron and hole masses. The exciton energies are obtained by a simple numerical integr
Based on a microscopic many-particle theory we investigate the influence of excitonic correlations on the vectorial polarization state characteristics of the parametric amplification of polaritons in semiconductor microcavities. We study a microcavit
The time-dependent optical properties of molecular systems are investigated by step-scan Fourier-transform spectroscopy in order to explore the dynamics at phase transitions and molecular orientation in the milli- and microsecond range. The electrica