ترغب بنشر مسار تعليمي؟ اضغط هنا

Polarization dependence of semiconductor exciton and biexciton contributions to phase-resolved optical two-dimensional Fourier-transform spectra

272   0   0.0 ( 0 )
 نشر من قبل Alan Bristow Alan Bristow
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the coherent light-matter interactions of GaAs quantum wells associated with excitons, biexcitons and many-body effects. For most polarization configurations, excitonic features dominate the phase-resolved two-dimensional Fourier-transform (2DFT) spectra and have dispersive lineshapes, indicating the presence of many-body interactions. For cross-linear excitation, excitonic features become weak and absorptive due to the strong suppression of many-body effects; a result that can not be directly determined in transient four-wave mixing experiments. The biexcitonic features do not weaken for cross-polarized excitation and thus are more important.



قيم البحث

اقرأ أيضاً

Fourier transform spectroscopy with classical interferometry corresponds to the measurement of a single-photon intensity spectrum from the viewpoint of the particle nature of light. In contrast, the Fourier transform of two-photon quantum interferenc e patterns provides the intensity spectrum of the two photons as a function of the sum or difference frequency of the constituent photons. This unique feature of quantum interferometric spectroscopy offers a different type of spectral information from the classical measurement and may prove useful for nonlinear spectroscopy with two-photon emission. Here, we report the first experimental demonstration of two-photon quantum interference of photon pairs emitted via biexcitons in the semiconductor CuCl. Besides applying Fourier transform to quantum interference patterns, we reconstruct the intensity spectrum of the biexciton luminescence in the two-photon sum or difference frequency. We discuss the connection between the reconstructed spectra and exciton states in CuCl as well as the capability of quantum interferometry in solid-state spectroscopy.
A combination of spatial interference patterns and spectral interferometry are used to find the global phase for non-collinear two-dimensional Fourier-transform (2DFT) spectra. Results are compared with those using the spectrally resolved transient a bsorption (STRA) method to find the global phase when excitation is with co-linear polarization. Additionally cross-linear polarized 2DFT spectra are correctly phased using the all-optical technique, where the SRTA is not applicable.
137 - M. Y. J. Tan , N. D. Drummond , 2008
We report calculations of the energies of excitons and biexcitons in ideal two-dimensional bilayer systems within the effective-mass approximation with isotropic electron and hole masses. The exciton energies are obtained by a simple numerical integr ation technique, while the biexciton energies are obtained from diffusion quantum Monte Carlo calculations. The exciton binding energy decays as the inverse of the separation of the layers, while the binding energy of the biexciton with respect to dissociation into two separate excitons decays exponentially.
126 - S. Schumacher , N. H. Kwong , 2007
Based on a microscopic many-particle theory we investigate the influence of excitonic correlations on the vectorial polarization state characteristics of the parametric amplification of polaritons in semiconductor microcavities. We study a microcavit y with perfect in-plane isotropy. A linear stability analysis of the cavity polariton dynamics shows that in the co-linear (TE-TE or TM-TM) pump-probe polarization state configuration, excitonic correlations diminish the parametric scattering process whereas it is enhanced by excitonic correlations in the cross-linear (TE-TM or TM-TE) configuration. Without any free parameters, our microscopic theory gives a quantitative understanding how many-particle effects can lead to a rotation or change of the outgoing (amplified) probe signals vectorial polarization state relative to the incoming ones.
The time-dependent optical properties of molecular systems are investigated by step-scan Fourier-transform spectroscopy in order to explore the dynamics at phase transitions and molecular orientation in the milli- and microsecond range. The electrica l switching of liquid crystals traced by vibrational spectroscopy reveals a rotation of the molecules with a relaxation time of 2 ms. The photo-induced neutral-ionic transition in TTF-CA takes place by a suppression of the dimerization in the ionic phase and creation of neutral domains. The time-dependent infrared spectra depend on temperature and laser pulse intensity; the relaxation of the spectra follows a stretched-exponential decay with relaxation times in the microsecond range strongly dependent on temperature and laser intensity. We present all details of the experimental setups and thoroughly discuss the technical challenges.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا