ﻻ يوجد ملخص باللغة العربية
We review our recent work on the physical mechanisms limiting the mobility of graphene on SiO2. We have used intentional addition of charged scattering impurities and systematic variation of the dielectric environment to differentiate the effects of charged impurities and short-range scatterers. The results show that charged impurities indeed lead to a conductivity linear in density in graphene, with a scattering magnitude that agrees quantitatively with theoretical estimates [1]; increased dielectric screening reduces scattering from charged impurities, but increases scattering from short-range scatterers [2]. We evaluate the effects of the corrugations (ripples) of graphene on SiO2 on transport by measuring the height-height correlation function. The results show that the corrugations cannot mimic long-range (charged impurity) scattering effects, and have too small an amplitude-to-wavelength ratio to significantly affect the observed mobility via short-range scattering [3, 4]. Temperature-dependent measurements show that longitudinal acoustic phonons in graphene produce a resistivity linear in temperature and independent of carrier density [5]; at higher temperatures, polar optical phonons of the SiO2 substrate give rise to an activated, carrier density-dependent resistivity [5]. Together the results paint a complete picture of charge carrier transport in graphene on SiO2 in the diffusive regime.
We employ scanning probe microscopy to reveal atomic structures and nanoscale morphology of graphene-based electronic devices (i.e. a graphene sheet supported by an insulating silicon dioxide substrate) for the first time. Atomic resolution STM image
We present spatially resolved Raman images of the G and 2D lines of single-layer graphene flakes. The spatial fluctuations of G and 2D lines are correlated and are thus shown to be affiliated with local doping domains. We investigate the position of
Graphene has attracted significant interest both for exploring fundamental science and for a wide range of technological applications. Chemical vapor deposition (CVD) is currently the only working approach to grow graphene at wafer scale, which is re
The linear dispersion relation in graphene[1,2] gives rise to a surprising prediction: the resistivity due to isotropic scatterers (e.g. white-noise disorder[3] or phonons[4-8]) is independent of carrier density n. Here we show that acoustic phonon s
Using micro-Raman spectroscopy and scanning tunneling microscopy, we study the relationship between structural distortion and electrical hole doping of graphene on a silicon dioxide substrate. The observed upshift of the Raman G band represents charg