ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical readout tracking detector concept using secondary scintillation from liquid argon generated by a thick gas electron multiplier

154   0   0.0 ( 0 )
 نشر من قبل Phil Lightfoot
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

For the first time secondary scintillation, generated within the holes of a thick gas electron multiplier (TGEM) immersed in liquid argon, has been observed and measured using a silicon photomultiplier device (SiPM). 250 electron-ion pairs, generated in liquid argon via the interaction of a 5.9KeV Fe-55 gamma source, were drifted under the influence of a 2.5KV/cm field towards a 1.5mm thickness TGEM, the local field sufficiently high to generate secondary scintillation light within the liquid as the charge traversed the central region of the TGEM hole. The resulting VUV light was incident on an immersed SiPM device coated in the waveshifter tetraphenyl butadiene (TPB), the emission spectrum peaked at 460nm in the high quantum efficiency region of the device. For a SiPM over-voltage of 1V, a TGEM voltage of 9.91KV, and a drift field of 2.5KV/cm, a total of 62 photoelectrons were produced at the SiPM device per Fe-55 event, corresponding to an estimated gain of 150 photoelectrons per drifted electron.



قيم البحث

اقرأ أيضاً

453 - M. Gai , D.N. McKinsey , K. Ni 2007
The Yale-Weizmann collaboration aims to develop a low-radioactivity (low-background) cryogenic noble liquid detector for Dark-Matter (DM) search in measurements to be performed deep underground as for example carried out by the XENON collaboration. A major issue is the background induced by natural radioactivity of present-detector components including the Photo Multiplier Tubes (PMT) made from glass with large U-Th content. We propose to use advanced Thick Gaseous Electron Multipliers (THGEM) recently developed at the Weizmann Institute of Science (WIS). These hole-multipliers will measure in a two-phase (liquid/gas) Xe detector electrons extracted into the gas phase from both ionization in the liquid as well as scintillation-induced photoelectrons from a CsI photocathode immersed in LXe. We report on initial tests (in gas) of THGEM made out of Cirlex (Kapton) which is well known to have low Ra-Th content instead of the usual G10 material with high Ra-Th content.
A successful operation of a new optical readout system (THGEM + WLS + MGPDs (multichannel array of multipixel avalanche Geiger photodiodes) in a two-phase liquid xenon detector was demonstrated.
The performance of a Thick-COBRA (THCOBRA) gaseous detector is studied using an optical readout technique. The operation principle of this device is described, highlighting its operation in a gas mixture of Ar/CF4 (80/20%) for visible scintillation l ight emission. The contributions to the total gain from the holes and the anode strips as a function of the applied bias voltage were visualized. The preservation of spatial information from the initial ionizations was demonstrated by analyzing the light emission from 5.9keV X-rays of an 55Fe source. The observed non-uniformity of the scintillation light from the holes supports the claim of a space localization accuracy better than the pitch of the holes. The acquired images were used to identify weak points and sources of instabilities in view of the development of new optimized structures.
A prototype Gas Electron Multiplier (GEM) detector is under construction for medical imaging purposes. A single thick GEM of size 10x10 cm^2 is assembled inside a square shaped air-tight box which is made of Perspex glass. In order to ionize gas insi de the drift field two types of voltage supplier circuits were fabricated, and array of 2x4 pads of each size 4x8 mm^2 were utilized for collecting avalanche charges. Preliminary testing results show that the circuit which produces high voltage and low current is better than that of low voltage and high current supplier circuit in terms of x-ray signal counting rates.
130 - Ettore Segreto 2020
Liquid argon is used as active medium in a variety of neutrino and Dark Matter experiments thanks to its excellent properties of charge yield and transport and as a scintillator. Liquid argon scintillation photons are emitted in a narrow band of 10~n m centered around 127 nm and with a characteristic time profile made by two components originated by the decay of the lowest lying singlet and triplet state of the excimer Ar$_2^*$ to the dissociative ground state. A model is proposed which takes into account the quenching of the long lived triplet states through the self-interaction with other triplet states or through the interaction with molecular Ar$_2^+$ ions. The model predicts the time profile of the scintillation signals and its dependence on the intensity of an external electric field and on the density of deposited energy, if the relative abundance of the unquenched fast and slow components is know. The model successfully explains the experimentally observed dependence of the characteristic time of the slow component on the intensity of the applied electric field and the increase of photon yield of liquid argon when doped with small quantities of xenon (at the ppm level). The model also predicts the dependence of the pulse shape parameter, F$_{prompt}$, for electron and nuclear recoils on the recoil energy and the behavior of the relative light yield of nuclear recoils in liquid argon, $mathcal{L}_{eff}$
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا