ترغب بنشر مسار تعليمي؟ اضغط هنا

Full Gap Superconductivity in Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ Probed by Muon Spin Rotation

293   0   0.0 ( 0 )
 نشر من قبل Ryosuke Kadono
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Superfluid density ($n_s$) in the mixed state of an iron pnictide superconductor Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ is determined by muon spin rotation for a sample with optimal doping ($x=0.4$). The temperature dependence of $n_s$ is perfectly reproduced by the conventional BCS model for s-wave paring, where the order parameter can be either a single-gap with $Delta=8.35(6)$ meV [$2Delta/k_BT_c=5.09(4)$], or double-gap structure with $Delta_1=12$ meV (fixed) [$2Delta_1/k_BT_c=7.3$] and $Delta_2=6.8(3)$ meV [$2Delta_2/k_BT_c=4.1(2)$]. The latter is consistent with the recent result of angle-resolved photo-emssion spectroscopy. The large gap parameters ($2Delta/k_BT_c$) indicate extremely strong coupling of carriers to bosons that mediate the Cooper pairing.



قيم البحث

اقرأ أيضاً

113 - L. Chen , T. T. Han , C. Cai 2021
Pairing symmetry which characterizes the superconducting pairing mechanism is normally determined by measuring the superconducting gap structure ($|Delta_k|$). Here, we report the measurement of a strain-induced gap modulation ($partial|Delta_k|$) in uniaxially strained Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ utilizing angle-resolved photoemission spectroscopy and $in$-$situ$ strain-tuning. We found that the uniaxial strain drives Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ into a nematic superconducting state which breaks the four-fold rotational symmetry of the superconducting pairing. The superconducting gap increases on the $d_{yz}$ electron and hole pockets while it decreases on the $d_{xz}$ counterparts. Such orbital selectivity indicates that orbital-selective pairing exists intrinsically in non-nematic iron-based superconductors. The $d_{xz}$ and $d_{yz}$ pairing channels are balanced originally in the pristine superconducting state, but become imbalanced under uniaxial strain. Our results highlight the important role of intra-orbital scattering in mediating the superconducting pairing in iron-based superconductors. It also highlights the measurement of $partial|Delta_k|$ as an effective way to characterize the superconducting pairing from a perturbation perspective.
103 - Y.M. Dai , B. Xu , B. Shen 2013
The optical properties of Ba$_{0.6}$K$_{0.4}$Fe$_{2}$As$_{2}$ have been determined in the normal state for a number of temperatures over a wide frequency range. Two Drude terms, representing two groups of carriers with different scattering rates ($1/ tau$), well describe the real part of the optical conductivity, $sigma_{1}(omega)$. A broad Drude component results in an incoherent background with a $T$-independent $1/tau_b$, while a narrow Drude component reveals a $T$-linear $1/tau_n$ resulting in a resistivity $rho_n equiv 1/sigma_{1n}(omegarightarrow 0)$ also linear in temperature. An arctan($T$) low-frequency spectral weight is also a strong evidence for a $T$-linear 1/$tau$. Comparison to other materials with similar behavior suggests that the $T$-linear $1/tau_n$ and $rho_n$ in Ba$_{0.6}$K$_{0.4}$Fe$_{2}$As$_{2}$ originate from scattering from spin fluctuations and hence that an antiferromagnetic quantum critical point is likely to exist in the superconducting dome.
161 - Y.-M. Xu , Y.-B. Huang , X.-Y. Cui 2010
The iron-pnictide superconductors have a layered structureformed by stacks of FeAs planes from which the superconductivity originates. Given the multiband and quasi three-dimensional cite{3D_SC} (3D) electronic structure of these high-temperature sup erconductors, knowledge of the quasi-3D superconducting (SC) gap is essential for understanding the superconducting mechanism. By using the KZ-capability of angle-resolved photoemission, we completely determined the SC gap on all five Fermi surfaces (FSs) in three dimensions on BKFAOP samples. We found a marked KZ dispersion of the SC gap, which can derive only from interlayer pairing. Remarkably, the SC energy gaps can be described by a single 3D gap function with two energy scales characterizing the strengths of intralayer $Delta_1$ and interlayer $Delta_2$ pairing. The anisotropy ratio $Delta_2/Delta_1$, determined from the gap function, is close to the c-axis anisotropy ratio of the magnetic exchange coupling $J_c/J_{ab}$ in the parent compound cite{NeutronParent}. The ubiquitous gap function for all the 3D FSs reveals that pairing is short-ranged and strongly constrain the possible pairing force in the pnictides. A suitable candidate could arise from short-range antiferromagnetic fluctuations.
We generalize the Chebyshev-Bogoliubov-deGennes method to treat multi-band systems to address the temperature dependence of the superconducting (SC) gaps of iron based superconductors. Four SC gaps associated with different electron and hole pockets of optimally doped Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ were clearly identified by angle resolved photo-emission spectroscopy. The few approaches that reproduces with success this gap structure are based on strong-coupling theories and required many adjustable parameters. We show that an approach with a redistribution of electron population between the hole and electron pockets $ u$ with evolving temperature reproduces the different coupling ratios $2Delta^{ u}(0)/k_{rm B} T_c$ in these materials. We define the values that fit the four zero temperature gaps $Delta^{ u}(0)$ and after that all $Delta^{ u}(T)$ is obtained without any additional parameter.
184 - Jianwei Huang , Lin Zhao , Cong Li 2019
In unconventional superconductors, it is generally believed that understanding the physical properties of the normal state is a pre-requisite for understanding the superconductivity mechanism. In conventional superconductors like niobium or lead, the normal state is a Fermi liquid with a well-defined Fermi surface and well-defined quasipartcles along the Fermi surface. Superconductivity is realized in this case by the Fermi surface instability in the superconducting state and the formation and condensation of the electron pairs (Cooper pairing). The high temperature cuprate superconductors, on the other hand, represent another extreme case that superconductivity can be realized in the underdoped region where there is neither well-defined Fermi surface due to the pseudogap formation nor quasiparticles near the antinodal regions in the normal state. Here we report a novel scenario that superconductivity is realized in a system with well-defined Fermi surface but without quasiparticles along the Fermi surface in the normal state. High resolution laser-based angle-resolved photoemission measurements have been performed on an optimally-doped iron-based superconductor (Ba$_{0.6}$K$_{0.4}$)Fe$_2$As$_2$. We find that, while sharp superconducting coherence peaks emerge in the superconducting state on the hole-like Fermi surface sheets, no quasiparticle peak is present in the normal state. Its electronic behaviours deviate strongly from a Fermi liquid system. The superconducting gap of such a system exhibits an unusual temperature dependence that it is nearly a constant in the superconducting state and abruptly closes at T$_c$. These observations have provided a new platform to study unconventional superconductivity in a non-Fermi liquid system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا