ﻻ يوجد ملخص باللغة العربية
The recent experimental evaluation of the 18F(a,p)21Ne reaction rate, when considering its associated uncertainties, presented significant differences compared to the theoretical Hauser-Feshbach rate. This was most apparent at the low temperatures relevant for He-shell burning in asymptotic giant branch (AGB) stars. Investigations into the effect on AGB nucleosynthesis revealed that the upper limit resulted in an enhanced production of 19F and 21Ne in carbon-rich AGB models, but the recommended and lower limits presented no differences from using the theoretical rate. This was the case for models spanning a range in metallicity from solar to [Fe/H] ~ -2.3. The results of this study are relevant for observations of F and C-enriched AGB stars in the Galaxy, and to the Ne composition of mainstream silicon carbide grains, that supposedly formed in the outflows of cool, carbon-rich giant stars. We discuss the mechanism that produces the extra F and summarize our main findings.
We present detailed models of low and intermediate-mass asymptotic giant branch (AGB) stars with and without the 18F(a,p)21Ne reaction included in the nuclear network, where the rate for this reaction has been recently experimentally evaluated for th
During the slow neutron capture process in massive stars, reactions on light elements can both produce and absorb neutrons thereby influencing the final heavy element abundances. At low metallicities, the high neutron capture rate of 16-O can inhibit
An analysis of the fluorine abundance in Galactic AGB carbon stars (24 N-type, 5 SC-type and 5 J-type) is presented. This study uses the state- of-the-art carbon rich atmosphere models and improved atomic and molecular line lists in the 2.3 {mu}m reg
We present nucleosynthesis calculations and the resulting 19F stellar yields for a large set of models with different masses and metallicity. We find that the production of fluorine depends on the temperature of the convective pulses, the amount of p
The degree to which the (p,gamma) and (p,alpha) reactions destroy 18F at temperatures 1-4x10^8 K is important for understanding the synthesis of nuclei in nova explosions and for using the long-lived radionuclide 18F, a target of gamma-ray astronomy,