ﻻ يوجد ملخص باللغة العربية
We numerically investigate quantum rings in graphene and find that their electronic properties may be strongly influenced by the geometry, the edge symmetries and the structure of the corners. Energy spectra are calculated for different geometries (triangular, hexagonal and rhombus-shaped graphene rings) and edge terminations (zigzag, armchair, as well as the disordered edge of a round geometry). The states localized at the inner edges of the graphene rings describe different evolution as a function of magnetic field when compared to those localized at the outer edges. We show that these different evolutions are the reason for the formation of sub-bands of edge states energy levels, separated by gaps (anticrossings). It is evident from mapping the charge densities that the anticrossings occur due to the coupling between inner and outer edge states.
Spatially inhomogeneous strains in graphene can simulate the effects of valley-dependent magnetic fields. As demonstrated in recent experiments, the realizable magnetic fields are large enough to give rise to well-defined flat pseudo-Landau levels, p
We study edges states of graphene ribbons in the quantized Hall regime, and show that they can be described within a continuum model (the Dirac equation) when appropriate boundary conditions are adopted. The two simplest terminations, zigzag and armc
Transport properties of irradiated graphene (electrical conductivity and mobility) are numerically investigated using the real-space Kubo formalism. A micrometer-sized system consisting of millions of atoms with nanopores of various sizes and concent
Helical conductors with spin-momentum locking are promising platforms for Majorana fermions. Here we report observation of two topologically distinct phases supporting helical edge states in charge neutral Bernal-stacked tetralayer graphene in Hall b
We theoretically study electronic properties of a graphene sheet on xy plane in a spatially nonuniform magnetic field, $B = B_0 hat{z}$ in one domain and $B = B_1 hat{z}$ in the other domain, in the quantum Hall regime and in the low-energy limit. We