ﻻ يوجد ملخص باللغة العربية
First passage models, where corporate assets undergo correlated random walks and a company defaults if its assets fall below a threshold provide an attractive framework for modeling the default process. Typical one year default correlations are small, i.e., of order a few percent, but nonetheless including correlations is very important, for managing portfolio credit risk and pricing some credit derivatives (e.g. first to default baskets). In first passage models the exact dependence of the joint survival probability of more than two firms on their asset correlations is not known. We derive an expression for the dependence of the joint survival probability of $n$ firms on their asset correlations using first order perturbation theory in the correlations. It includes all terms that are linear in the correlations but neglects effects of quadratic and higher order. For constant time independent correlations we compare the first passage model expression for the joint survival probability with what a multivariate normal Copula function gives. As a practical application of our results we calculate the dependence of the five year joint survival probability for five basic industrials on their asset correlations.
Motivated by the need for parametric families of rich and yet tractable distributions in financial mathematics, both in pricing and risk management settings, but also considering wider statistical applications, we investigate a novel technique for in
We study the survival probability and the growth rate for branching random walks in random environment (BRWRE). The particles perform simple symmetric random walks on the $d$-dimensional integer lattice, while at each time unit, they split into indep
The continuous-time random walk (CTRW) is a pure-jump stochastic process with several applications in physics, but also in insurance, finance and economics. A definition is given for a class of stochastic integrals driven by a CTRW, that includes the
The study of record statistics of correlated series is gaining momentum. In this work, we study the records statistics of the time series of select stock market data and the geometric random walk, primarily through simulations. We show that the distr
Coronavirus (COVID-19) creates fear and uncertainty, hitting the global economy and amplifying the financial markets volatility. The oil price reaction to COVID-19 was gradually accommodated until March 09, 2020, when, 49 days after the release of th