ترغب بنشر مسار تعليمي؟ اضغط هنا

Holographic flavor in N=4 gauge theories in 3d from wrapped branes

131   0   0.0 ( 0 )
 نشر من قبل Alfonso V. Ramallo
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the addition of flavor to the gravity dual of N=4 three-dimensional gauge theories obtained by wrapping $N_c$ D4-branes on a two-cycle of a non-compact Calabi-Yau two-fold. In this setup the flavor is introduced by adding another set of D4-branes that are extended along the non-compact directions of the Calabi-Yau which are normal to the cycle which the color branes wrap. The analysis is performed both in the quenched and unquenched approximations. In this latter case we compute the backreacted metric and we show that it reproduces the running of the gauge coupling. The meson spectrum and the behavior of Wilson loops are also discussed and the holographic realization of the Higgs branch is analyzed. Other aspects of this system studied are the entanglement entropy and the non-relativistic version of our backgrounds.



قيم البحث

اقرأ أيضاً

We discuss fractional D3-branes on the orbifold C^3/Z_2*Z_2. We study the open and the closed string spectrum on this orbifold. The corresponding N=1 theory on the brane has, generically, a U(N_1)*U(N_2)*U(N_3)*U(N_4) gauge group with matter in the b ifundamental. In particular, when only one type of brane is present, one obtains pure N=1 Yang-Mills. We study the coupling of the branes to the bulk fields and present the corresponding supergravity solution, valid at large distances. By using a probe analysis, we are able to obtain the Wilsonian beta-function for those gauge theories that possess some chiral multiplet. Although, due to the lack of moduli, the probe technique is not directly applicable to the case of pure N=1 Yang-Mills, we point out that the same formula gives the correct result also for this case.
We analyse the Seiberg Witten curve describing the N=2 gauge theory dual to the supergravity solution with fractional branes. Emphasis is given to those aspects that are related to stringy mechanism known as the enhancon. We also compare our results with the features of the supergravity duals, which have been variously interpreted in the literature. Known aspects of the N=2 gauge theories seem to agree with the supergravity solution, whenever the two theories can be faithfully compared.
We show that M-theory admits a supersymmetric compactification to the Godel universe of the form Godel3 x S2 x CY3. We interpret this geometry as coming from the backreaction of M2-branes wrapping the S2 in an AdS3 x S2 x CY3 flux compactification. I n the black hole deconstruction proposal similar states give rise to the entropy of a D4-D0 black hole. The system is effectively described by a three-dimensional theory consisting of an axion-dilaton coupled to gravity with a negative cosmological constant. Other embeddings of the three-dimensional theory imply similar supersymmetric Godel compactifications of type IIA/IIB string theory and F-theory.
We consider $3d$ $mathcal{N}!=!2$ gauge theories with fundamental matter plus a single field in a rank-$2$ representation. Using iteratively a process of deconfinement of the rank-$2$ field, we produce a sequence of Seiberg-dual quiver theories. We d etail this process in two examples with zero superpotential: $Usp(2N)$ gauge theory with an antisymmetric field and $U(N)$ gauge theory with an adjoint field. The fully deconfined dual quiver has $N$ nodes, and can be interpreted as an Aharony dual of theories with rank-$2$ matter. All chiral ring generators of the original theory are mapped into gauge singlet fields of the fully deconfined quiver dual.
We exhibit exact conformal field theory descriptions of SO(N) and Sp(N) pairs of Seiberg-dual gauge theories within string theory. The N=1 gauge theories with flavour are realized as low energy limits of the worldvolume theories on D-branes in unorie nted non-critical superstring backgrounds. These unoriented backgrounds are obtained by constructing exact crosscap states in the SL(2,R)/U(1) coset conformal field theory using the modular bootstrap method. Seiberg duality is understood by studying the behaviour of the boundary and crosscap states under monodromy in the closed string parameter space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا