ﻻ يوجد ملخص باللغة العربية
We study the injection locking bistability of a specially engineered two-color semiconductor Fabry-Perot laser. Oscillation in the uninjected primary mode leads to a bistability of single mode and two-color equilibria. With pulsed modulation of the injected power we demonstrate an all-optical memory element based on this bistability, where the uninjected primary mode is switched with 35 dB intensity contrast. Using experimental and theoretical analysis, we describe the associated bifurcation structure, which is not found in single mode systems with optical injection.
We present a simple and effective method to implement an active stabilization of a diode laser with injection locking, which requires minimal user intervenes. The injection locked state of the diode laser is probed by a photodetector, of which sensit
A proposal for an all-optical memory based on a bistability of single-mode states in a dual-mode diode laser with time-delayed optical feedback is presented. The system is modeled using a multimode extension of the Lang-Kobayashi equations with injec
A class of multiwavelength Fabry-Perot lasers is introduced where the spectrum is tailored through a non-periodic patterning of the cavity effective index. The cavity geometry is obtained using an inverse scattering approach and can be designed such
The past decade has witnessed major advances in the development of microresonator-based frequency combs (microcombs) that are broadband optical frequency combs with repetition rates in the millimeter-wave to microwave domain. Integrated microcombs ca
Injection locking is a well known and commonly used method for coherent light amplification. Usually injection locking is done with a single-frequency seeding beam. In this work we show that injection locking may also be achieved in the case of multi