ﻻ يوجد ملخص باللغة العربية
We design extremely flexible ultrahigh-Q diamond-based double-heterostructure photonic crystal slab cavities by modifying the refractive index of the diamond. The refractive index changes needed for ultrahigh-Q cavities with $Q ~ 10^7$, are well within what can be achieved ($Delta n sim 0.02$). The cavity modes have relatively small volumes $V<2 (lambda /n)^3$, making them ideal for cavity quantum electro-dynamic applications. Importantly for realistic fabrication, our design is flexible because the range of parameters, cavity length and the index changes, that enables an ultrahigh-Q is quite broad. Furthermore as the index modification is post-processed, an efficient technique to generate cavities around defect centres is achievable, improving prospects for defect-tolerant quantum architectures.
We describe the strong optomechanical dynamical interactions in ultrahigh-Q/V slot-type photonic crystal cavities. The dispersive coupling is based on a mode-gap photonic crystal cavities with light localization in an air mode with 0.02(lambda/n)3 mo
Photonic crystals with a finite size can support surface modes when appropriately terminated. We calculate the dispersion curves of surface modes for different terminations using the plane wave expansion method. These non-radiative surface modes can
A photonic crystal nanocavity with a Quality (Q) factor of 2.3 x 10^5, a mode volume of 0.55($lambda/n$)^3, and an operating wavelength of 637 nm is designed in a silicon nitride (SiN_x) ridge waveguide with refractive index of 2.0. The effect on the
We propose a practical scheme to observe the polaritonic quantum phase transition (QPT) from the superfluid (SF) to Bose-glass (BG) to Mott-insulator (MI) states. The system consists of a two-dimensional array of photonic crystal microcavities doped
The development of solid-state photonic quantum technologies is of great interest for fundamental studies of light-matter interactions and quantum information science. Diamond has turned out to be an attractive material for integrated quantum informa