ترغب بنشر مسار تعليمي؟ اضغط هنا

A HST/WFPC2 survey of bright young clusters in M31. I. VdB0, a massive star cluster seen at ~= 25 Myr

213   0   0.0 ( 0 )
 نشر من قبل Sibilla Perina
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. Perina




اسأل ChatGPT حول البحث

{Aims.} We introduce our imaging survey of possible young massive globular clusters in M31 performed with the Wide Field and Planetary Camera 2 (WFPC2) on the Hubble Space Telescope (HST). We present here details of the data reduction pipeline that is being applied to all the survey data and describe its application to the brightest among our targets, van den Bergh 0 (VdB0), taken as a test case. {Methods.} The reddening, the age and the metallicity of the cluster are estimated by comparison of the observed Color Magnitude Diagram (CMD) with theoretical isochrones. {Results.} Under the most conservative assumptions the stellar mass of VdB0 is M > 2.4 x 10^4 M_sun, but our best estimates lie in the range ~ 4-9 x 10^4 M_sun. The CMD of VdB0 is best reproduced by models having solar metallicity and age = 25 Myr. Ages smaller than = 12 Myr and larger than = 60 Myr are clearly ruled out by the available data. The cluster has a remarkable number of Red Super Giants (> 18) and a CMD very similar to Large Magellanic Cloud clusters usually classified as young globulars such as NGC 1850, for example. {Conclusions.} VdB0 is significantly brighter (>~ 1 mag) than Galactic open clusters of similar age. Its present-day mass and half-light radius (r_h=7.4 pc) are more typical of faint globular clusters than of open clusters. However, given its position within the disk of M31 it is expected to be destroyed by dynamical effects, in particular by encounters with giant molecular clouds, within the next ~ 4 Gyr.



قيم البحث

اقرأ أيضاً

160 - S. Perina 2009
{Aims.} We present the main results of an imaging survey of possible young massive clusters (YMC) in M31 performed with the Wide Field and Planetary Camera2 (WFPC2) on the Hubble Space Telescope (HST). We present the images and color magnitude diagra ms (CMDs) of all of our targets. {Methods.} The reddening, age and, metallicity of the clusters were estimated by comparing the observed CMDs and luminosity functions with theoretical models. Stellar masses were estimated by comparison with theoretical models in the log(Age) vs. absolute integrated magnitude plane. {Results.} Nineteen of the twenty surveyed candidates were confirmed to be real star clusters. Three of the clusters were found not to be good YMC candidates from newly available integrated spectroscopy and were in fact found to be old from their CMD. Of the remaining sixteen clusters, fourteen have ages between 25 Myr and 280 Myr, two have older ages than 500 Myr (lower limits). By including ten other YMC with HST photometry from the literature we have assembled a sample of 25 clusters younger than 1 Gyr, with mass ranging from 0.6 x 10^4 M_sun to 6 x 10^4 M_sun, with an average of ~ 3 x 10^4 M_sun. {Conclusions.} The clusters considered here are confirmed to have masses significantly higher than Galactic open clusters in the same age range. Our analysis indicates that YMCs are relatively common in all the largest star-forming galaxies of the Local Group.
We report new HST/WFPC2 photometry for 10 globular clusters (GC) in M31 observed in F5555W(V) and F814W(I). Additionally we have reanalyzed HST archival data of comparable quality for 2 more GCs. Extraordinary care is taken to account for the effects of blended stellar images and required field subtraction. We thus reach 1 mag fainter than the horizontal branch (HB) even in unfavorable cases. We present the color-magnitude diagrams (CMDs) and discuss their main features also in comparison with the properties of the Galactic GCs. This analysis is augmented with CMDs previously obtained and discussed by Fusi Pecci et al. (1996) on 8 other M31 clusters. We report the following significant results: 1. The locus of the red giant branches give reliable metallicity determinations which compare generally very well with ground-based integrated spectroscopic and photometric measures, as well as giving good reddening estimates. 2. The HB morphologies show the same behavior with metallicity as the Galactic GCs, with indications that the 2nd-parameter effect can be present in some GCs of our sample. However, at [Fe/H] ~ -1.7 we observe a number of GCs with red HB morphology such that the HB type versus [Fe/H] relation is offset from the MW and resembles that of the Fornax dwarf spheroidal galaxy. One explanation for the offset is that they are younger than their MW counterparts by 1-2 Gyr. 3. The Mv(HB)-[Fe/H] relationship has been determined and the slope (~0.20) is very similar to the values derived from RR Lyrae stars in the MW and the LMC. The zero-point of this relation based on the assumed distance modulus (m-M)o(M31)=24.47+/-0.03 is consistent with (m-M)o(LMC)=18.55.
Context: Young massive clusters are key to map the Milky Ways structure, and near-IR large area sky surveys have contributed strongly to the discovery of new obscured massive stellar clusters. Aims: We present the third article in a series of paper s focused on young and massive clusters discovered in the VVV survey. This article is dedicated to the physical characterization of VVV CL086, using part of its OB-stellar population. Methods: We physically characterized the cluster using $JHK_S$ near-infrared photometry from ESO public survey VVV images, using the VVV-SkZ pipeline, and near-infrared $K$-band spectroscopy, following the methodology presented in the first article of the series. Results: Individual distances for two observed stars indicate that the cluster is located at the far edge of the Galactic bar. These stars, which are probable cluster members from the statistically field-star decontaminated CMD, have spectral types between O9 and B0V. According to our analysis, this young cluster ($1.0$ Myr $<$ age $< 5.0$ Myr) is located at a distance of $11^{+5}_{-6}$ kpc, and we estimate a lower limit for the cluster total mass of $(2.8^{+1.6}_{-1.4})cdot10^3 {M}_{odot}$. It is likely that the cluster contains even earlier and more massive stars.
We have studied the properties of a sample of 67 very blue and likely young massive clusters in M31 extracted from the Bologna Revised Catalog of globular clusters, selected according to their color [(B-V) < 0.45] and/or to the strength of their Hbet a spectral index (Hbeta > 3.5 A). Their existence in M31 has been noted by several authors in the past; we show here that these Blue Luminous Compact Clusters (BLCCs) are a significant fraction (>~ 15%) of the whole globular cluster system of M31. Compared to the global properties of the M31 globular cluster system, they appear to be intrinsically fainter, morphologically less concentrated, and with a shallower Balmer jump and enhanced $Hbeta$ absorption in their spectra. Empirical comparison with integrated properties of clusters with known age as well as with theoretical SSP models consistently indicate that their typical age is less than ~2 Gyr, while they probably are not so metal-poor as deduced if considered to be old. Either selecting BLCCs by their (B-V) colors or by the strength of their Hbeta index the cluster sample turns out to be distributed onto the outskirts of M31 disc, sharing the kinematical properties of the thin, rapidly rotating disc component. If confirmed to be young and not metal-poor, these clusters indicate the occurrence of a significant recent star formation in the thin disc of M31, although they do not set constraints on the epoch of its early formation.
135 - Sang Chul Kim 2007
We present the result of a wide-field survey of globular clusters (GCs) in M31 covering a 3deg x 3deg field c. We have searched for GCs on CCD images taken with Washington CMT1 filters at the KPNO 0.9 m telescope using steps: (1) inspection of morpho logical parameters given by the SExtractor package such as stellarity, full maximum, and ellipticity; (2) consulting the spectral types and radial velocities obtained from spectra takena spectrograph at the WIYN 3.5 m telescope; and (3) visual inspection of the images of each object. We have and GC candidates, of which 605 are newly found GCs and GC candidates and 559 are previously known GCs. Amoects there are 113 genuine GCs, 258 probable GCs, and 234 possible GCs, according to our classification critee known objects there are 383 genuine GCs, 109 probable GCs, and 67 possible GCs. In total there are 496 genprobable GCs and 301 possible GCs. Most of these newly found GCs have T1 magnitudes of 17.5 - 19.5 mag, [17.9 < V < 19.9 mag assuming (C-T1) ~ 1.5], and (C-T1) colors in the range 1 - 2.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا