ﻻ يوجد ملخص باللغة العربية
We revisit the possible turbulent sources of the solar dynamo. Studying axisymmetric mean-field dynamo models, we find that the large-scale poloidal magnetic field could be generated not only by the famous alpha effect, but also by the Omega x J and shear-current effects. The inclusion of these additional turbulent sources alleviates several of the known problems of solar mean-field dynamo models.
We present non-radiative, cosmological zoom-simulations of galaxy cluster formation with magnetic fields and (anisotropic) thermal conduction of one very massive galaxy cluster with a mass at redshift zero that corresponds to $M_mathrm{vir} sim 2 tim
The turbulent pumping effect corresponds to the transport of magnetic flux due to the presence of density and turbulence gradients in convectively unstable layers. In the induction equation it appears as an advective term and for this reason it is ex
We investigate dynamo action in global compressible solar-like convective dynamos in the framework of mean-field theory. We simulate a solar-type star in a wedge-shaped spherical shell, where the interplay between convection and rotation self-consist
In Keplerian accretion disks, turbulence and magnetic fields may be jointly excited through a subcritical dynamo process involving the magnetorotational instability (MRI). High-resolution simulations exhibit a tendency towards statistical self-organi
The small-scale turbulent dynamo in the high Prandtl number regime is described in terms of the one-point Fourier space correlators. The second order correlator of this kind is the energy spectrum and it has been previously studied in detail. We exam