ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Remnant as Dark Energy and Dark Matter

414   0   0.0 ( 0 )
 نشر من قبل Seoktae Koh
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the quantum remnant of a scalar field protected by the uncertainty principle. The quantum remnant that survived the later stage of evolution of the universe may provide dark energy and dark matter depending on the potential. Though the quantum remnant shares some useful property of complex scalar field (spintessence) dark energy model, % However although it avoids the formation of Q-ball, quantum fluctuations are still unstable to the linear perturbations for $V sim phi^q$ with $q<1$ as in the spintessence model.



قيم البحث

اقرأ أيضاً

400 - Yuri Shtanov 2021
A new cosmological scenario is proposed in which a light scalaron of $f (R)$ gravity plays the role of dark matter. In this scenario, the scalaron initially resides at the minimum of its effective potential while the electroweak symmetry is unbroken. At the beginning of the electroweak crossover, the evolving expectation value of the Higgs field triggers the evolution of the scalaron due to interaction between these fields. After the electroweak crossover, the oscillating scalaron can represent cold dark matter. Its current energy density depends on a single free parameter, the scalaron mass $m$, and the value $m simeq 4 times 10^{-3}, text{eV}$ is required to explain the observed dark-matter abundance. Larger mass values would be required in scenarios where the scalaron is excited before the electroweak crossover.
53 - Antonio Capolupo 2017
We study the vacuum condensate characterizing many physical phenomena. We show that such a condensate may leads to non-trivial components of the dark energy and of the dark matter and may induces the spontaneous supersymmetry breaking, in a supersymm etric context. In particular, we consider the condensate induced by thermal states, fields in curved space-time and mixed particles.
107 - Cesar Gomez , Raul Jimenez 2020
A promising candidate for cold dark matter is primordial black holes (PBH) formed from strong primordial quantum fluctuations. A necessary condition for the formation of PBHs is a change of sign in the tilt governing the anomalous scale invariance of the power spectrum from red at large scales into blue at small scales. Non-perturbative information on the dependence of the power spectrum tilt on energy scale can be extracted from the quantum Fisher information measuring the energy dependence of the quantum phases defining the de Sitter vacua. We show that this non-perturbative quantum tilt goes from a red tilted phase, at large scales, into a blue tilted phase at small scales converging to $n_s=2$ in the UV. This allows the formation of PBHs in the range of masses $lesssim 10^{20} gr$.
We study the phenomenology of a recent string construction with a quantum mechanically stable dark energy. A mild supersymmetry protects the vacuum energy but also allows $O(10 - 100)$ TeV scale superpartner masses. The construction is holographic in the sense that the 4D spacetime is generated from pixels originating from five-branes wrapped over metastable five-cycles of the compactification. The cosmological constant scales as $Lambda sim 1/N$ in the pixel number. An instability in the construction leads to cosmic expansion. This also causes more five-branes to wind up in the geometry, leading to a slowly decreasing cosmological constant which we interpret as an epoch of inflation followed by (pre-)heating when a rare event occurs in which the number of pixels increases by an order one fraction. The sudden appearance of radiation triggers an exponential increase in the number of pixels. Dark energy has a time varying equation of state with $w_a=-3Omega_{m,0}(1+w_0)/2$, which is compatible with current bounds, and could be constrained further by future data releases. The pixelated nature of the Universe also implies a large-$l$ cutoff on the angular power spectrum of cosmological observables with $l_{rm max} sim O(N)$. We also use this pixel description to study the thermodynamics of de Sitter space, finding rough agreement with effective field theory considerations.
We here provide further details on the construction and properties of mass dimension one quantum fields based on Elko expansion coefficients. We show that by a judicious choice of phases, the locality structure can be dramatically improved. In the pr ocess we construct a fermionic dark matter candidate which carries not only an unsuppressed quartic self interaction but also a preferred axis. Both of these aspects are tentatively supported by the data on dark matter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا