ﻻ يوجد ملخص باللغة العربية
Motivated by the hinge structure present in protein chains and other molecular conformations, we study the singularities of certain maps associated to body-and-hinge and panel-and-hinge chains. These are sequentially articulated systems where two consecutive rigid pieces are connected by a hinge, that is, a codimension two axis. The singularities, or critical points, correspond to a dimensional drop in the linear span of the axes, regarded as points on a Grassmann variety in its Pl{u}cker embedding. These results are valid in arbitrary dimension. The three dimensional case is also relevant in robotics.
We study body-and-hinge and panel-and-hinge chains in R^d, with two marked points: one on the first body, the other on the last. For a general chain, the squared distance between the marked points gives a Morse-Bott function on a torus configuration
In this paper we investigate the singularities of Lagrangian mean curvature flows in $mathbf{C}^m$ by means of smooth singularity models. Type I singularities can only occur at certain times determined by invariants in the cohomology of the initial d
Conformal invariance of two-dimensional variational problems is a condition known to enable a blow-up analysis of solutions and to deduce the removability of singularities. In this paper, we identify another condition that is not only sufficient, but
Generic singularities of line fields have been studied for lines of principal curvature of embedded surfaces. In this paper we propose an approach to classify generic singularities of general line fields on 2D manifolds. The idea is to identify line
We verify a conjecture of Perelman, which states that there exists a canonical Ricci flow through singularities starting from an arbitrary compact Riemannian 3-manifold. Our main result is a uniqueness theorem for such flows, which, together with an