ترغب بنشر مسار تعليمي؟ اضغط هنا

The Chandra survey of the SMC Bar: II. Optical counterparts of X-ray sources

144   0   0.0 ( 0 )
 نشر من قبل Vallia Antoniou
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Vallia Antoniou




اسأل ChatGPT حول البحث

We present the most likely optical counterparts of 113 X-ray sources detected in our Chandra survey of the central region of the Small Magellanic Cloud (SMC) based on the OGLE-II and MCPS catalogs. We estimate that the foreground contamination and chance coincidence probability are minimal for the bright optical counterparts (corresponding to OB type stars; 35 in total). We propose here for the first time 13 High-Mass X-ray Binaries (HMXBs), of which 4 are Be/X-ray binaries (Be-XRBs), and we confirm the previous classification of 18 Be-XRBs. We estimate that the new candidate Be-XRBs have an age of 15-85 Myr, consistent with the age of Be stars. We also examine the overabundance of Be-XRBs in the SMC fields covered by Chandra, in comparison with the Galaxy. In luminosities down to about 10^{34} erg/s, we find that SMC Be-XRBs are 1.5 times more common when compared to the Milky Way even after taking into account the difference in the formation rates of OB stars. This residual excess can be attributed to the lower metallicity of the SMC. Finally, we find that the mixing of Be-XRBs with other than their natal stellar population is not an issue in our comparisons of Be-XRBs and stellar populations in the SMC. Instead, we find indication for variation of the SMC XRB populations on kiloparsec scales, related to local variations of the formation rate of OB stars and slight variation of their age, which results in different relative numbers of Be stars and therefore XRBs.



قيم البحث

اقرأ أيضاً

As part of the Chandra Galactic Bulge Survey (GBS), we present a catalogue of optical sources in the GBS footprint. This consists of two regions centered at Galactic latitude b = 1.5 degrees above and below the Galactic Centre, spanning (l x b) = (6x 1) degrees. The catalogue consists of 2 or more epochs of observations for each line of sight in r, i and H{alpha} filters. It is complete down to r = 20.2 and i = 19.2 mag; the mean 5{sigma} depth is r = 22.5 and i = 21.1 mag. The mean root-mean-square residuals of the astrometric solutions is 0.04 arcsec. We cross-correlate this optical catalogue with the 1640 unique X-ray sources detected in Chandra observations of the GBS area, and find candidate optical counterparts to 1480 X-ray sources. We use a false alarm probability analysis to estimate the contamination by interlopers, and expect ~ 10 per cent of optical counterparts to be chance alignments. To determine the most likely counterpart for each X-ray source, we compute the likelihood ratio for all optical sources within the 4{sigma} X-ray error circle. This analysis yields 1480 potential counterparts (~ 90 per cent of the sample). 584 counterparts have saturated photometry (r<17, i<16), indicating these objects are likely foreground sources and the real counterparts. 171 candidate counterparts are detected only in the i-band. These sources are good qLMXB and CV candidates as they are X-ray bright and likely located in the Bulge.
72 - A. Georgakakis 2006
We discuss the optical and X-ray spectral properties of the sources detected in a single 200ks Chandra pointing in the Groth-Westphal Strip region. Optical identifications and spectroscopic redshifts are primarily from the DEEP2 survey. This is compl emented with deeper (r~26mag) multi-waveband data (ugriz) from the Canada France Hawaii Legacy Survey to estimate photometric redshifts and to optically identify sources fainter than the DEEP2 magnitude limit (R(AB)~24.5mag). We focus our study on the 2-10keV selected sample comprising 97 sources to the limit ~8e-16erg/s/cm2, this being the most complete in terms of optical identification rate (86%) and redshift determination fraction (63%; both spectroscopic and photometric). We first construct the redshift distribution of the sample which shows a peak at z~1. This is in broad agreement with models where less luminous AGNs evolve out to z~1 with powerful QSOs peaking at higher redshift, z~2. Evolution similar to that of broad-line QSOs applied to the entire AGN population (both type-I and II) does not fit the data. We also explore the observed N_H distribution of the sample and estimate a fraction of obscured AGN (N_H>1e22) of ~48%. This is found to be consistent with both a luminosity dependent intrinsic N_H distribution, where less luminous systems comprise a higher fraction of type-II AGNs, and models with a fixed ratio 2:1 between type-I and II AGNs. We further compare our results with those obtained in deeper and shallower surveys. We argue that a luminosity dependent parametrisation of the intrinsic N_H distribution is required to account for the fraction of obscured AGN observed in different samples over a wide range of fluxes.
138 - Adrienne M. Cool 2012
We present results of a search for optical counterparts of X-ray sources in and toward the globular cluster Omega Centauri (NGC 5139) using the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope. The ACS data consist of a mosaic of Wide Field Channel (WFC) images obtained using F625W, F435W, and F658N filters; with 9 pointings we cover the central ~10x10 of the cluster and encompass 109 known Chandra sources. We find promising optical counterparts for 59 of the sources, ~40 of which are likely to be associated with the cluster. These include 27 candidate cataclysmic variables (CVs), 24 of which are reported here for the first time. Fourteen of the CV candidates are very faint, with absolute magnitudes in the range M_625 = 10.4 - 12.6, making them comparable in brightness to field CVs near the period minimum discovered in the SDSS (Gansicke et al. 2009). Additional optical counterparts include three BY Dra candidates, a possible blue straggler, and a previously-reported quiescent low-mass X-ray binary (Haggard et al. 2004). We also identify three foreground stars and 11 probable active galactic nuclei. Finally, we report the discovery of a group of seven stars whose X-ray properties are suggestive of magnetically active binaries, and whose optical counterparts lie on or very near the metal-rich anomalous giant and subgiant branches in {omega} Cen. If the apparent association between these seven stars and the RGB/SGB-a stars is real, then the frequency of X-ray sources in this metal-rich population is enhanced by a factor of at least five relative to the other giant and subgiant populations in the cluster. If these stars are not members of the metal-rich population, then they bring to 20 the total number of red stragglers (also known as sub-subgiants) that have been identified in {omega} Cen, the largest number yet known in any globular cluster.
We present a photometric survey of the optical counterparts of ultraluminous X-ray sources (ULXs) observed with the Hubble Space Telescope in nearby (< 5 Mpc) galaxies. Of the 33 ULXs with Hubble & Chandra data, 9 have no visible counterpart, placing limits on their M_V of ~ -4 to -9, enabling us to rule out O-type companions in 4 cases. The refined positions of two ULXs place them in the nucleus of their host galaxy. They are removed from our sample. Of the 22 remaining ULXs, 13 have one possible optical counterpart, while multiple are visible within the error regions of other ULXs. By calculating the number of chance coincidences, we estimate that 13 +/- 5 are the true counterparts. We attempt to constrain the nature of the companions by fitting the SED and M_V to obtain candidate spectral types. We can rule out O-type companions in 20 cases, while we find that one ULX (NGC 253 ULX2) excludes all OB-type companions. Fitting with X-ray irradiated models provides constraints on the donor star mass and radius. For 7 ULXs, we are able to impose inclination-dependent upper and/or lower limits on the black holes mass, if the extinction to the assumed companion star is not larger than the Galactic column. These are NGC 55 ULX1, NGC 253 ULX1, NGC 253 ULX2, NGC 253 XMM6, Ho IX X-1, IC342 X-1 & NGC 5204 X-1. This suggests that 10 ULXs do not have O companions, while none of the 18 fitted rule out B-type companions.
We use deep J and Ks images of the Antennae (NGC 4038/9) obtained with WIRC on the Palomar 200-inch telescope, together with the Chandra X-ray source list of Zezas et al. (2002a), to search for IR counterparts to X-ray point sources. We establish an X-ray/IR astrometric frame tie with 0.5 rms residuals over a ~4.3 field. We find 13 ``strong IR counterparts brighter than Ks = 17.8 mag and < 1.0 from X-ray sources, and an additional 6 ``possible IR counterparts between 1.0 and 1.5 from X-ray sources. The surface density of IR sources near the X-ray sources suggests only ~2 of the ``strong counterparts and ~3 of the ``possible counterparts are chance superpositions of unrelated objects. Comparing both strong and possible IR counterparts to our photometric study of ~220 Antennae, IR clusters, we find the IR counterparts to X-ray sources are ~1.2 mag more luminous in Ks than average non-X-ray clusters. We also note that the X-ray/IR matches are concentrated in the spiral arms and ``overlap regions of the Antennae. This implies that these X-ray sources lie in the most ``super of the Antennaes Super Star Clusters, and thus trace the recent massive star formation history here. Based on the N_H inferred from the X-ray sources without IR counterparts, we determine that the absence of most of the ``missing IR counterparts is because they are intrinsically less luminous in the IR, implying that they trace a different (possibly older) stellar population.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا