ترغب بنشر مسار تعليمي؟ اضغط هنا

Late time observations of GRB080319B: jet break, host galaxy and accompanying supernova

83   0   0.0 ( 0 )
 نشر من قبل Nial R. Tanvir
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Swift discovered GRB080319B was by far the most distant source ever observed at naked eye brightness, reaching a peak apparent magnitude of 5.3 at a redshift of z=0.937. We present our late-time optical (HST, Gemini & VLT) and X-ray (Chandra) observations, which confirm that an achromatic break occurred in the power-law afterglow light curve at ~11 days post-burst. This most likely indicates that the gamma-ray burst (GRB) outflow was collimated, which for a uniform jet would imply a total energy in the jet E_{jet} gsim 10^{52} erg. Our observations also show a late-time excess of red light, which is well explained if the GRB was accompanied by a supernova (SN), similar to those seen in some other long-duration GRBs. The latest observations are dominated by light from the host and show that the GRB took place in a faint dwarf galaxy (r(AB)approx27.0, rest-frame M_Bapprox-17.2). This galaxy is small even by the standards of other GRB hosts, which is suggestive of a low metallicity environment. Intriguingly, the properties of this extreme event - a small host and bright supernova - are entirely typical of the very low-luminosity bursts such as GRB980425 and GRB060218.



قيم البحث

اقرأ أيضاً

Super-luminous supernovae of type Ic have a tendency to occur in faint host galaxies which are likely to have low mass and low metallicity. PTF12dam is one of the closest and best studied super-luminous explosions that has a broad and slowly fading l ightcurve similar to SN 2007bi. Here we present new photometry and spectroscopy for PTF12dam from 200-500 days (rest-frame) after peak and a detailed analysis of the host galaxy (SDSS J142446.21+461348.6 at z = 0.107). Using deep templates and image subtraction we show that the full lightcurve can be fit with a magnetar model if escape of high-energy gamma rays is taken into account. The full bolometric lightcurve from -53 to +399 days (with respect to peak) cannot be fit satisfactorily with the pair-instability models. An alternative model of interaction with a dense CSM produces a good fit to the data although this requires a very large mass (~ 13 M_sun) of hydrogen free CSM. The host galaxy is a compact dwarf (physical size ~ 1.9 kpc) and with M_g = -19.33 +/- 0.10, it is the brightest nearby SLSN Ic host discovered so far. The host is a low mass system (2.8 x 10^8 M_sun) with a star-formation rate (5.0 M_sun/year), which implies a very high specific star-formation rate (17.9 Gyr^-1). The remarkably strong nebular lines provide detections of the [O III] lambda 4363 and [O II] lambdalambda 7320,7330 auroral lines and an accurate oxygen abundance of 12 + log(O/H) = 8.05 +/- 0.09. We show here that they are at the extreme end of the metallicity distribution of dwarf galaxies and propose that low metallicity is a requirement to produce these rare and peculiar supernovae.
We study iPTF14hls, a luminous and extraordinary long-lived Type II supernova, which lately has attracted much attention and disparate interpretation. We present new optical photometry that extends the light curves until more than 3 yr past discovery . We also obtained optical spectroscopy over this period, and furthermore present additional space-based observations using Swift and HST. After an almost constant luminosity for hundreds of days, the later light curve of iPTF14hls finally fades and then displays a dramatic drop after about 1000 d, but the supernova is still visible at the latest epochs presented. The spectra have finally turned nebular, and the very last optical spectrum likely displays signatures from the deep and dense interior of the explosion. The high-resolution HST image highlights the complex environment of the explosion in this low-luminosity galaxy. We provide a large number of additional late-time observations of iPTF14hls, which are (and will continue to be) used to assess the many different interpretations for this intriguing object. In particular, the very late (+1000 d) steep decline of the optical light curve, the lack of very strong X-ray emission, and the emergence of intermediate-width emission lines including of [S II] that likely originate from dense, processed material in the core of the supernova ejecta, are all key observational tests for existing and future models.
100 - N. Masetti , E. Palazzi , E. Pian 2005
We present the results of an optical and near-infrared (NIR) monitoring campaign of the counterpart of Gamma-Ray Burst (GRB) 000911, located at redshift z=1.06, from 5 days to more than 13 months after explosion. Our extensive dataset is a factor of 2 larger and spans a time interval about 4 times longer than the ones considered previously for this GRB afterglow; this allows a more thorough analysis of its light curve and of the GRB host galaxy properties. The afterglow light curves show a single power-law temporal decline, modified at late times by light from a host galaxy with moderate intrinsic extinction, and possibly by an emerging supernova (SN). The afterglow evolution is interpreted within the classical fireball scenario as a weakly collimated adiabatic shock propagating in the interstellar medium. The presence of a SN light curve superimposed on the non-thermal afterglow emission is investigated: while in the optical bands no significant contribution to the total light is found from a SN, the NIR J-band data show an excess which is consistent with a SN as bright as the known hypernova SN1998bw. If the SN interpretation is true, this would be the farthest GRB-associated SN, as well as the farthest core-collapse SN, discovered to date. However, other possible explanations of this NIR excess are also investigated. Finally, we studied the photometric properties of the host, and found that it is likely to be a slightly reddened, subluminous, extreme starburst compact galaxy, with luminosity about 0.1 L*, an age of about 0.5 Gyr and a specific Star Formation Rate (SFR) of approximately 30 Msol yr-1 (L/L*)-1. This is the highest specific SFR value for a GRB host inferred from optical/NIR data.
PTF11kx was a Type Ia supernova (SN Ia) that showed time-variable absorption features, including saturated Ca II H&K lines that weakened and eventually went into emission. The strength of the emission component of H{alpha} increased, implying that th e SN was undergoing significant interaction with its circumstellar medium (CSM). These features were blueshifted slightly and showed a P-Cygni profile, likely indicating that the CSM was directly related to, and probably previously ejected by, the progenitor system itself. These and other observations led Dilday et al. (2012) to conclude that PTF11kx came from a symbiotic nova progenitor like RS Oph. In this work we extend the spectral coverage of PTF11kx to 124-680 rest-frame days past maximum brightness. These spectra of PTF11kx are dominated by H{alpha} emission (with widths of ~2000 km/s), strong Ca II emission features (~10,000 km/s wide), and a blue quasi-continuum due to many overlapping narrow lines of Fe II. Emission from oxygen, He I, and Balmer lines higher than H{alpha} is weak or completely absent at all epochs, leading to large observed H{alpha}/H{beta} intensity ratios. The broader (~2000 km/s) H{alpha} emission appears to increase in strength with time for ~1 yr, but it subsequently decreases significantly along with the Ca II emission. Our latest spectrum also indicates the possibility of newly formed dust in the system as evidenced by a slight decrease in the red wing of H{alpha}. During the same epochs, multiple narrow emission features from the CSM temporally vary in strength. The weakening of the H{alpha} and Ca II emission at late times is possible evidence that the SN ejecta have overtaken the majority of the CSM and agrees with models of other strongly interacting SNe Ia. The varying narrow emission features, on the other hand, may indicate that the CSM is clumpy or consists of multiple thin shells.
Superluminous supernovae (SLSNe) are found predominantly in dwarf galaxies, indicating that their progenitors have a low metallicity. However, the most nearby SLSN to date, SN 2017egm, occurred in the spiral galaxy NGC 3191, which has a relatively hi gh stellar mass and correspondingly high metallicity. In this paper, we present detailed analysis of the nearby environment of SN 2017egm using MaNGA IFU data, which provides spectral data on kiloparsec scales. From the velocity map we find no evidence that SN 2017egm occurred within some intervening satellite galaxy, and at the SN position most metallicity diagnostics yield a solar and above solar metallicity (12 + log (O/H) = 8.8-9.1). Additionally we measure a small H-alpha equivalent width (EW) at the SN position of just 34 Angs, which is one of the lowest EWs measured at any SLSN or Gamma-Ray Burst position, and indicative of the progenitor star being comparatively old. We also compare the observed properties of NGC 3191 with other SLSN host galaxies. The solar-metallicity environment at the position of SN 2017egm presents a challenge to our theoretical understanding, and our spatially resolved spectral analysis provides further constraints on the progenitors of SLSNe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا