ﻻ يوجد ملخص باللغة العربية
We have successfully synthesized the fluoride-arsenide compounds Ca$_{1-x}$RE$_x$FeAsF (RE=Nd, Pr; x=0, 0.6). The x-ray powder diffraction confirmed that the main phases of our samples are Ca$_{1-x}$RE$_x$FeAsF with the ZrCuSiAs structure. By measuring resistivity, superconductivity was observed at 57.4 K in Nd-doped and 52.8 K in Pr-doped samples with x=0.6. Bulk superconductivity was also proved by the DC magnetization measurements in both samples. Hall effect measurements revealed hole-like charge carriers in the parent compound CaFeAsF with a clear resistivity anomaly below 118 K, while the Hall coefficient $R_H$ in the normal state is negative for the superconducting samples Ca$_{0.4}$Nd$_{0.6}$FeAsF and Ca$_{0.4}$Pr$_{0.6}$FeAsF. This indicates that the rare earth element doping introduces electrons into CaFeAsF which induces the high temperature superconductivity.
Fluoride-doped iron-based oxypnictides containing rare-earth gadolinium (GdFeAsO0.8F0.2) and co-doping with yttrium (Gd0.8Y0.2FeAsO0.8F0.2) have been prepared via conventional solid state reaction at ambient pressure. The non-yttrium substituted oxyp
High-pressure superconductivity in a rare-earth doped Ca0.86Pr0.14Fe2As2 single crystalline sample has been studied up to 12 GPa and temperatures down to 11 K using designer diamond anvil cell under a quasi-hydrostatic pressure medium. The electrical
Chemical doping has recently become a very important strategy to induce superconductivity especially in complex compounds. Distinguished examples include Ba-doped La$_2$CuO$_4$ (the first high temperature superconductor), K-doped BaBiO$_3$, K-doped C
A series of 122 phase BaFe$_{2-x}$Ni$_x$As$_2$ ($x$ = 0, 0.055, 0.096, 0.18, 0.23) single crystals were grown by self flux method and a dome-like Ni doping dependence of superconducting transition temperature is discovered. The transition temperature
Aliovalent rare earth substitution into the alkaline earth site of CaFe2As2 single-crystals is used to fine-tune structural, magnetic and electronic properties of this iron-based superconducting system. Neutron and single crystal x-ray scattering exp