ﻻ يوجد ملخص باللغة العربية
In this paper we apply to photoproduction total cross-section a model we have proposed for purely hadronic processes and which is based on QCD mini-jets and soft gluon re-summation. We compare the predictions of our model with the HERA data as well as with other models. For cosmic rays, our model predicts substantially higher cross-sections at TeV energies than models based on factorization but lower than models based on mini-jets alone, without soft gluons. We discuss the origin of this difference.
A previously successful model for purely hadronic total cross-sections, based on QCD minijets and soft-gluon resummation, is here applied to the total photoproduction cross section. We find that our model in the gamma p case predicts a rise with energy stronger than in the pp -pbarp case.
A model for the total photoproduction cross section based on the ansatz that resummation of infrared gluons limits the rise induced by QCD minijets in all the total cross-sections, is used to simulate extended air showers initiated by cosmic rays wit
A model for both proton and photon total cross-sections is presented and compared with data. The model is based on the eikonal representation, with QCD mini-jets to drive the rise and soft gluon kt-resummation into the Infrared region to tame the exc
First correction to the high-energy asymptotics of the total $e^+e^-$ photoproduction cross section in the electric field of a heavy atom is derived with the exact account of this field. The consideration is based on the use of the quasiclassical ele
We present results for the total top-pair production cross section at the Tevatron and the LHC. Our predictions supplement fixed-order results with resummation of soft logarithms and Coulomb singularities to next-to-next-to-leading (NNLL) logarithmic