ﻻ يوجد ملخص باللغة العربية
Theories of low-energy Lorentz violation by a fixed-norm aether vector field with two-derivative kinetic terms have a globally bounded Hamiltonian and are perturbatively stable only if the vector is timelike and the kinetic term in the action takes the form of a sigma model. Here we investigate the phenomenological properties of this theory. We first consider the propagation of modes in the presence of gravity, and show that there is a unique choice of curvature coupling that leads to a theory without superluminal modes. Experimental constraints on this theory come from a number of sources, and we examine bounds in a two-dimensional parameter space. We then consider the cosmological evolution of the aether, arguing that the vector will naturally evolve to be orthogonal to constant-density hypersurfaces in a Friedmann-Robertson-Walker cosmology. Finally, we examine cosmological evolution in the presence of an extra compact dimension of space, concluding that a vector can maintain a constant projection along the extra dimension in an expanding universe only when the expansion is exponential.
We propose a new way to hide extra dimensions without invoking branes, based on Lorentz-violating tensor fields with expectation values along the extra directions. We investigate the case of a single vector ``aether field on a compact circle. In such
We study the entanglement wedge cross-section (EWCS) in holographic Aether gravity theory, a gravity theory with Lorentz symmetry breaking meanwhile keeping the general covariance intact. We find that only a limited parameter space is allowed to obta
We present a Poisson-sigma model describing general 2D dilaton gravity with non-metricity, torsion and curvature. It involves three arbitrary functions of the dilaton field, two of which are well-known from metric compatible theories, while the third
We explore solutions of six dimensional gravity coupled to a non-linear sigma model, in the presence of co-dimension two branes. We investigate the compactifications induced by a spherical scalar manifold and analyze the conditions under which they a
We obtain numerical solutions for rotating topological solitons of the nonlinear $sigma$-model in three-dimensional Anti-de Sitter space. Two types of solutions, $i)$ and $ii)$, are found. The $sigma$-model fields are everywhere well defined for both