New Bound States of Heavy Quarks at LHC and Tevatron


الملخص بالإنكليزية

The present paper is based on the assumption that heavy quarks bound states exist in the Standard Model (SM). Considering New Bound States (NBS) of top-anti-top quarks (named T-balls) we have shown that: 1) there exists the scalar 1S--bound state of $6t+6bar t$; 2) the forces which bind the top-quarks are very strong and almost completely compensate the mass of the twelve top-anti-top-quarks in the scalar NBS; 3) such strong forces are produced by the Higgs-top-quarks interaction with a large value of the top-quark Yukawa coupling constant $g_tsimeq 1$. Theory also predicts the existence of the NBS $6t + 5bar t$, which is a color triplet and a fermion similar to the $t$-quark of the fourth generation. We have also considered the b-quark-replaced NBS, estimated the masses of the lightest fermionic NBS: $M_{NBS}gtrsim 300$ GeV, and discussed the larger masses of T-balls. We have developed a theory of the scalar T-balls condensate and predicted the existence of three SM phases. Searching for heavy quark bound states at the Tevatron and LHC is discussed. We have constructed the possible form-factors of T-balls, and estimated the charge multiplicity coming from the T-balls decays.

تحميل البحث