ترغب بنشر مسار تعليمي؟ اضغط هنا

Preparation of distilled and purified continuous variable entangled states

158   0   0.0 ( 0 )
 نشر من قبل Boris Hage
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The distribution of entangled states of light over long distances is a major challenge in the field of quantum information. Optical losses, phase diffusion and mixing with thermal states lead to decoherence and destroy the non-classical states after some finite transmission-line length. Quantum repeater protocols, which combine quantum memory, entanglement distillation and entanglement swapping, were proposed to overcome this problem. Here we report on the experimental demonstration of entanglement distillation in the continuous-variable regime. Entangled states were first disturbed by random phase fluctuations and then distilled and purified using interference on beam splitters and homodyne detection. Measurements of covariance matrices clearly indicate a regained strength of entanglement and purity of the distilled states. In contrast to previous demonstrations of entanglement distillation in the complementary discrete-variable regime, our scheme achieved the actual preparation of the distilled states, which might therefore be used to improve the quality of downstream applications such as quantum teleportation.



قيم البحث

اقرأ أيضاً

We study a class of mixed non-Gaussian entangled states that, whilst closely related to Gaussian entangled states, none-the-less exhibit distinct properties previously only associated with more exotic, pure non-Gaussian states.
We present a proposal for storing and retrieving a continuous-variable quadripartite polarization-entangled cluster state, using macroscopic atomic ensembles in a magnetic field. The Larmor precession of the atomic spins leads to a symmetry between t he atomic canonical operators. In this scheme, each of the four spatially separated pulses passes twice through the respective ensemble in order to map the polarization-entangled cluster state onto the long-lived atomic ensembles. The stored state can then be retrieved by another four read-out pulses, each crossing the respective ensemble twice. By calculating the variances, we analyzed the fidelities of the storage and retrieval, and our scheme is feasible under realistic experimental conditions.
172 - Y. Lin , J. P. Gaebler , F. Reiter 2016
Entangled states are a crucial resource for quantum-based technologies such as quantum computers and quantum communication systems (1,2). Exploring new methods for entanglement generation is important for diversifying and eventually improving current approaches. Here, we create entanglement in atomic ions by applying laser fields to constrain the evolution to a restricted number of states, in an approach that has become known as quantum Zeno dynamics (3-5). With two trapped $^9rm{Be}^+$ ions, we obtain Bell state fidelities up to $0.990^{+2}_{-5}$, with three ions, a W-state (6) fidelity of $0.910^{+4}_{-7}$ is obtained. Compared to other methods of producing entanglement in trapped ions, this procedure is relatively insensitive to certain imperfections such as fluctuations in laser intensity, laser frequency, and ion-motion frequencies.
Currently available separability criteria for continuous-variable states are generally based on the covariance matrix of quadrature operators. The well-known separability criterion of Duan et al. [Phys. Rev. Lett. 84, 2722 (2000)] and Simon [Phys. Re v. Lett. 84, 2726 (2000)] , for example, gives a necessary and sufficient condition for a two-mode Gaussian state to be separable, but leaves many entangled non-Gaussian states undetected. Here, we introduce an improvement of this criterion that enables a stronger entanglement detection. The improved condition is based on the knowledge of an additional parameter, namely the degree of Gaussianity, and exploits a connection with Gaussianity-bounded uncertainty relations [Phys. Rev. A 86, 030102 (2012)]. We exhibit families of non-Gaussian entangled states whose entanglement remains undetected by the Duan-Simon criterion.
The positivity of the partial transpose is in general only a necessary condition for separability. There exist quantum states that are not separable, but nevertheless are positive under partial transpose. States of this type are known as bound entang led states meaning that these states are entangled but they do not allow distillation of pure entanglement by means of local operations and classical communication (LOCC). We present a parametrization of a class of $2times 2$ bound entangled Gaussian states for bipartite continuous-variable quantum systems with two modes on each side. We propose an experimental protocol for preparing a particular bound entangled state in quantum optics. We then discuss the robustness properties of this protocol with respect to the occupation number of thermal inputs and the degrees of squeezing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا