ﻻ يوجد ملخص باللغة العربية
It is shown that naive two stage scenario of the soft multiparticle production in hadronic and nuclear collisions at high energy, when at first stage the colour strings are formed and at the second stage these strings, or some other (higher colour) strings formed due to fusion of primary strings, are decaying, emitting observed particles, encounters some difficulties at the attempt to analyse the space-time picture of the process. Simple analysis shows the dominant is the process when the formation and the decay of a string occur in parallel - a string breaks into two parts already at rather small length (about 1-2 fm in its c.m. system), then the process repeats in the pieces and so on. Nevertheless it is proved to be possible to agree the string fusion idea with the space-time picture of a string decay. In the framework of the Artru-Mennessier model of a string fragmentation the simple interpretation of the homogeneity of the rapidity distribution for hadrons produced from the decay of a single string at high energy is presented and the analytical estimate for the density of this rapidity distribution is obtained.
We examine the space-time evolution of (pre-)hadron production within the Lund string fragmentation model. The complete four-dimensional information of the string breaking vertices and the meeting points of the prehadron constituents are extracted fo
Motivated by recent theoretical arguments that expanding strings can be regarded as having a temperature that is inversely proportional to the proper time, tau, we investigate the consequences of adding a term proportional to 1/tau to the string tens
Motivated by recent discoveries of flow-like effects in pp collisions, and noting that multiple string systems can form and hadronize simultaneously in such collisions, we develop a simple model for the repulsive interaction between two Lund strings
We present a new model for the hadronisation of multi-parton systems, in which colour correlations beyond leading $N_C$ are allowed to influence the formation of confining potentials (strings). The multiplet structure of $SU(3)$ is combined with a mi
We recall and update, both theoretically and phenomenologically, our (nearly) forty-years-old proposal of a string-junction as a necessary complement to the conventional classification of hadrons based just on their quark-antiquark constituents. In t