ترغب بنشر مسار تعليمي؟ اضغط هنا

Modification of Graphene Properties due to Electron-Beam Irradiation

171   0   0.0 ( 0 )
 نشر من قبل Alexander Balandin
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The authors report micro-Raman investigation of changes in the single and bilayer graphene crystal lattice induced by the low and medium energy electron-beam irradiation (5 and 20 keV). It was found that the radiation exposures results in appearance of the strong disorder D band around 1345 1/cm indicating damage to the lattice. The D and G peak evolution with the increasing radiation dose follows the amorphization trajectory, which suggests graphenes transformation to the nanocrystalline, and then to amorphous form. The results have important implications for graphene characterization and device fabrication, which rely on the electron microscopy and focused ion beam processing.



قيم البحث

اقرأ أيضاً

Using X-ray photoelectron spectroscopy, thermal desorption spectroscopy, and scanning tunneling microscopy we show that upon keV Xe + irradiation of graphene on Ir(111), Xe atoms are trapped under the graphene. Upon annealing, aggregation of Xe leads to graphene bulges and blisters. The efficient trapping is an unexpected and remarkable phenomenon, given the absence of chemical binding of Xe to Ir and to graphene, the weak interaction of a perfect graphene layer with Ir(111), as well as the substantial damage to graphene due to irradiation. By combining molecular dynamics simulations and density functional theory calculations with our experiments, we uncover the mechanism of trapping. We describe ways to avoid blister formation during graphene growth, and also demonstrate how ion implantation can be used to intentionally create blisters without introducing damage to the graphene layer. Our approach may provide a pathway to synthesize new materials at a substrate - 2D material interface or to enable confined reactions at high pressures and temperatures.
Electron irradiation is investigated as a way to dope the topological insulator Bi2Te3. For this, p-type Bi2Te3 single crystals have been irradiated with 2.5 MeV electrons at room temperature and electrical measurements have been performed in-situ as well as ex-situ in magnetic fields up to 14 T. The defects created by irradiation act as electron donors allowing the compensation of the initial hole-type conductivity of the material as well as the conversion of the conductivity from p- to n-type. The changes in carrier concentration are investigated using Hall effect and Shubnikov-de Haas (SdH) oscillations, clearly observable in the p-type samples before irradiation, but also after the irradiation-induced conversion of the conductivity to n-type. The SdH patterns observed for the magnetic field along the trigonal axis can be entirely explained assuming the contribution of only one valence and conduction band, respectively, and Zeeman-splitting of the orbital levels.
We address the optical conductivity of undoped bilayer graphene in the presence of a finite bias voltage at finite temperature. The effects of gap parameter and stacking type on optical conductivity are discussed in the context of tight binding model Hamiltonian. Greens function approach has been implemented to find the behavior of optical conductivity of bilayer graphene within linear response theory. We have found the frequency dependence of optical conductivity for different values of gap parameter and bias voltage. Also the dependence of optical conductivity on the temperature has been investigated in details. A peak appears in the plot of optical conductivity versus frequency for different values of temperatures and bias voltage. Furthermore we find the frequency position of broad peak in optical conductivity goes to higher values with increase of gap parameter for both bernal and simple stacked bilayer graphenes.
As impermeable to gas molecules and at the same time transparent to high-energy ions, graphene has been suggested as a window material for separating a high-vacuum ion beam system from targets kept at ambient conditions. However, accumulation of irra diation-induced damage in the graphene membrane may give rise to its mechanical failure. Using atomistic simulations, we demonstrate that irradiated graphene even with a high vacancy concentration does not show signs of such instability, indicating a considerable robustness of graphene windows. We further show that upper and lower estimates for the irradiation damage in graphene can be set using a simple model.
The possibility of utilizing the rich spin-dependent properties of graphene has attracted great attention in pursuit of spintronics advances. The promise of high-speed and low-energy consumption devices motivates a search for layered structures that stabilize chiral spin textures such as topologically protected skyrmions. Here we demonstrate that chiral spin textures are induced at graphene/ferromagnetic metal interfaces. This is unexpected because graphene is a weak spin-orbit coupling material and is generally not expected to induce sufficient Dzyaloshinskii-Moriya interaction to affect magnetic chirality. We demonstrate that graphene induces a new type of Dzyaloshinskii-Moriya interaction due to a Rashba effect. First-principles calculations and experiments using spin-polarized electron microscopy show that this graphene-induced Dzyaloshinskii-Moriya interaction can have similar magnitude as at interfaces with heavy metals. This work paves a new path towards two-dimensional material based spin orbitronics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا