ﻻ يوجد ملخص باللغة العربية
The s-process production in massive stars at very low metallicities is expected to be negligible due to the low abundance of the neutron source 22Ne, to primary neutron poisons and decreasing iron seed abundances. However, recent models of massive stars including the effects of rotation show that a strong production of 22Ne is possible in the helium core, as a consequence of the primary nitrogen production (observed in halo metal poor stars). Using the PPN post-processing code, we studied the impact of this primary 22Ne on the s process. We find a large production of s elements between strontium and barium, starting with the amount of primary 22Ne predicted by stellar models. There are several key reaction rate uncertainties influencing the s-process efficiency. Among them, 17O(alpha,gamma) may play a crucial role strongly influencing the s process efficiency, or it may play a negligible role, according to the rate used in the calculations. We also report on the development of a new parallel (MPI) post-processing code (MPPNP) designed to follow the complete nucleosynthesis in stars on highly resolved grids. We present here the first post-processing run from the ZAMS up to the end of helium burning for a 15 solar mass model.
Context. Rotation is known to affect the nucleosynthesis of light elements in massive stars, mainly by rotation-induced mixing. In particular, rotation boosts the primary nitrogen production. Models of rotating stars are able to reproduce the nitroge
Current models of s-nucleosynthesis in massive stars ($Msim15 M_{odot}$ to $sim 30 M_{odot}$) are able to reproduce some main features of the abundance distributions of heavy isotopes in the solar system, at least in the $Asim 60-90$ mass range. The
The goal of this paper is to analyze the impact of a primary neutron source on the s-process nucleosynthesis in massive stars at halo metallicity. Recent stellar models including rotation at very low metallicity predict a strong production of primary
A large sample of carbon enhanced metal-poor stars enriched in s-process elements (CEMP-s) have been observed in the Galactic halo. These stars of low mass (M ~ 0.9 Msun) are located on the main-sequence or the red giant phase, and do not undergo thi
In this paper we present a large-scale sensitivity study of reaction rates in the main component of the $s$ process. The aim of this study is to identify all rates, which have a global effect on the $s$ process abundance distribution and the three mo