ﻻ يوجد ملخص باللغة العربية
The nucleosynthetic yield from a supernova explosion depends upon a variety of effects: progenitor evolution, explosion process, details of the nuclear network, and nuclear rates. Especially in studies of integrated stellar yields, simplifications reduce these uncertainties. But nature is much more complex, and to actually study nuclear rates, we will have to understand the full, complex set of processes involved in nucleosynthesis. Here we discuss a few of these complexities and detail how the NuGrid collaboration will address them.
The spatial and velocity distributions of nuclear species synthesized in the innermost regions of core-collapse supernovae can yield important clues about explosion asymmetries and the operation of the still disputed explosion mechanism. Recent obser
Based on a set of machine learning predictions of glass formation in the Ni-Ti-Al system, we have undertaken a high-throughput experimental study of that system. We utilized rapid synthesis followed by high-throughput structural and electrochemical c
Context: Tracing unstable isotopes produced in supernova nucleosynthesis provides a direct diagnostic of supernova explosion physics. Theoretical models predict an extensive variety of scenarios, which can be constrained through observations of the a
Recent works have indicated that the $^{56}$Ni masses estimated for Stripped Envelope SNe (SESNe) are systematically higher than those estimated for SNe II. Although this may suggest a distinct progenitor structure between these types of SNe, the pos
Asymmetry is required by most numerical simulations of stellar core-collapse explosions, but the form it takes differs significantly among models. The spatial distribution of radioactive 44Ti, synthesized in an exploding star near the boundary betwee